
January 2017 | Volume 11 | Article 21

Technology RepoRT
published: 25 January 2017

doi: 10.3389/fnbot.2017.00002

Frontiers in Neurorobotics | www.frontiersin.org

Edited by:
Quan Zou,

UnitedHealth Group, USA

Reviewed by:
Mikael Djurfeldt,

Royal Institute of Technology,
Sweden

Keyan Ghazi-Zahedi,
Max Planck Institute for Mathematics

in the Sciences, Germany
Marcel Stimberg,

Université Pierre et Marie Curie,
France

*Correspondence:
Egidio Falotico

e.falotico@sssup.it

Received: 11 October 2016
Accepted: 04 January 2017
Published: 25 January 2017

Citation:
Falotico E, Vannucci L, Ambrosano A,

Albanese U, Ulbrich S,
Vasquez Tieck JC, Hinkel G, Kaiser J,

Peric I, Denninger O, Cauli N,
Kirtay M, Roennau A, Klinker G,

Von Arnim A, Guyot L, Peppicelli D,
Martínez-Cañada P, Ros E, Maier P,

Weber S, Huber M, Plecher D,
Röhrbein F, Deser S, Roitberg A,

van der Smagt P, Dillman R, Levi P,
Laschi C, Knoll AC and Gewaltig M-O

(2017) Connecting Artificial Brains to
Robots in a Comprehensive
Simulation Framework: The

Neurorobotics Platform.
Front. Neurorobot. 11:2.

doi: 10.3389/fnbot.2017.00002

connecting Artificial Brains to
Robots in a comprehensive
Simulation Framework: The
neurorobotics platform
Egidio Falotico1*, Lorenzo Vannucci1, Alessandro Ambrosano1, Ugo Albanese1,
Stefan Ulbrich2, Juan Camilo Vasquez Tieck2, Georg Hinkel3, Jacques Kaiser2, Igor Peric2,
Oliver Denninger3, Nino Cauli4, Murat Kirtay1, Arne Roennau2, Gudrun Klinker5,
Axel Von Arnim6, Luc Guyot7, Daniel Peppicelli7, Pablo Martínez-Cañada8, Eduardo Ros8,
Patrick Maier5, Sandro Weber5, Manuel Huber5, David Plecher5, Florian Röhrbein5,
Stefan Deser5, Alina Roitberg5, Patrick van der Smagt6, Rüdiger Dillman2, Paul Levi2,
Cecilia Laschi1, Alois C. Knoll5 and Marc-Oliver Gewaltig7

1 The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy, 2 Department of Intelligent Systems and Production
Engineering (ISPE – IDS/TKS), FZI Research Center for Information Technology, Karlsruhe, Germany, 3 Department of
Software Engineering (SE), FZI Research Center for Information Technology, Karlsruhe, Germany, 4 Computer and Robot
Vision Laboratory, Instituto de Sistemas e Robotica, Instituto Superior Tecnico, Lisbon, Portugal, 5 Department of Informatics,
Technical University of Munich, Garching, Germany, 6 Fortiss GmbH, Munich, Germany, 7 Blue Brain Project (BBP), École
polytechnique fédérale de Lausanne (EPFL), Genève, Switzerland, 8 Department of Computer Architecture and Technology,
CITIC, University of Granada, Granada, Spain

Combined efforts in the fields of neuroscience, computer science, and biology allowed
to design biologically realistic models of the brain based on spiking neural networks.
For a proper validation of these models, an embodiment in a dynamic and rich sensory
environment, where the model is exposed to a realistic sensory-motor task, is needed.
Due to the complexity of these brain models that, at the current stage, cannot deal with
real-time constraints, it is not possible to embed them into a real-world task. Rather,
the embodiment has to be simulated as well. While adequate tools exist to simulate
either complex neural networks or robots and their environments, there is so far no tool
that allows to easily establish a communication between brain and body models. The
Neurorobotics Platform is a new web-based environment that aims to fill this gap by
offering scientists and technology developers a software infrastructure allowing them to
connect brain models to detailed simulations of robot bodies and environments and to
use the resulting neurorobotic systems for in silico experimentation. In order to simplify the
workflow and reduce the level of the required programming skills, the platform provides
editors for the specification of experimental sequences and conditions, environments,
robots, and brain–body connectors. In addition to that, a variety of existing robots and
environments are provided. This work presents the architecture of the first release of the
Neurorobotics Platform developed in subproject 10 “Neurorobotics” of the Human Brain
Project (HBP).1 At the current state, the Neurorobotics Platform allows researchers to

1 https://www.humanbrainproject.eu.

http://www.frontiersin.org/Neurorobotics/
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2017.00002&domain=pdf&date_stamp=2017-01-25
http://www.frontiersin.org/Neurorobotics/archive
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
https://doi.org/10.3389/fnbot.2017.00002
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:e.falotico@sssup.it
https://doi.org/10.3389/fnbot.2017.00002
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00002/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00002/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00002/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2017.00002/abstract
http://loop.frontiersin.org/people/213104
http://loop.frontiersin.org/people/380965
http://loop.frontiersin.org/people/387731
http://loop.frontiersin.org/people/217235
http://loop.frontiersin.org/people/394144
http://loop.frontiersin.org/people/385610
http://loop.frontiersin.org/people/401642
http://loop.frontiersin.org/people/112190
http://loop.frontiersin.org/people/88752
http://loop.frontiersin.org/people/112131
http://loop.frontiersin.org/people/54260
http://loop.frontiersin.org/people/67698
http://loop.frontiersin.org/people/168798
http://loop.frontiersin.org/people/87469
http://loop.frontiersin.org/people/42313
http://loop.frontiersin.org/people/393
https://www.humanbrainproject.eu

2

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

1. InTRoDUcTIon

Developing neuro-inspired computing paradigms that mimic
nervous system functions is a well-established field of research
that fosters our understanding of the human brain. The brain
is a complex structure, and designing models that can mimic
such a structure is particularly difficult. Modeling brain function
requires understanding how each subsystem (sensory, motor,
emotional, etc.) works, how these subsystems interact with
each other, and, as a whole, how they can generate complex
behaviors in the interaction with the environment. Moreover, it
is well known that during development the brain is molded by
experience and the environment (Benefiel and Greenough, 1998;
Briones et al., 2004). Thus, studying and validating models of
brain function requires a proper embodiment of the brain model
as well as a dynamic and rich sensory environment in which the
robot–brain ensemble can be embedded and then be exposed to
a realistic sensory-motor task. Since advanced brain models are
too complex to be simulated in real time, the researcher is faced
with a dilemma. Either the brain model is simplified until it can
be simulated in real time. In this case, the brain model can be
embedded in a physical robot, operating in the real world, but
the complexity of the brain models that can be studied is highly
limited. Or the complexity of the brain model is maintained. In
this case, there are no limits on the brain models; however, it is
now no longer possible to embed the brain into a real-world task.
Rather, the embodiment has to be simulated as well.

While adequate tools exist to simulate either complex neural
network models (Gewaltig and Diesmann, 2007) or robots and
their environments (Koenig and Howard, 2004), there is so far
no tool that allows researchers to easily connect realistic brain
models to a robot and embed it in a sensory-rich environment
model.

Such a tool would require the capability of orchestrating and
synchronizing both simulations as well as managing the exchange
of data between them. The goal of such simulations is to study and
quantify the behavior of models of the brain. As a consequence,
we do not only need a complex, realistic experimental environ-
ment but we also need a controllable and measurable setup where
stimuli can be generated and responses can be measured. In fact,
real environment complexity and parameters are intrinsically
difficult or even impossible to control. In addition, models of
brain functions, designed to properly reproduce brain activ-
ity at different levels could not be executed in real time due to

complex neuron dynamics and the size of the network (Kunkel
et al., 2014). This is the reason why we propose to use a digital
simulator implementing realistic scenarios. The main restriction
we propose is to have a simulator that could run at a “slower” time
(limited by the computation time required by the brain simula-
tion) and also that the time can be sampled in discrete intervals
without compromising the simulation quality.

The idea behind this approach is providing a tool chain, which
grants researchers’ access to simulation control as well as state-
of-the-art tools such as models of robot and brain and methods
to connect them in a proper way (i.e., connecting spiking neural
networks to robotic sensors and actuators). A first approach used
to connect spiking neural networks and robots has been presented
by Gamez et al. (2012). iSpike is a C++ library that provides an
interface between spiking neural network simulators and the
iCub humanoid robot. It uses a biologically inspired approach
to convert the robots’ sensory information into spikes that are
passed to the neural network simulator, and it decodes output
spikes from the network into motor signals that are sent to control
the robot. Another communication interface named CLONES
(Voegtlin, 2011) between a neural simulator [BRIAN (Goodman
and Brette, 2008)] and SOFA, a physics engine for biomedical
applications (Allard et al., 2007), has been developed using shared
memory and semaphores. The most similar system to iSpike and
CLONES is the interface that was created for the CRONOS and
SIMNOS robots (Gamez et al., 2006) which encoded visual and
proprioceptive data from the robots into spikes that were passed
to a spiking neural network simulated in SpikeStream. Spiking
motor output from the network was transformed back into real
values that were used to control the robots. This system was used
to develop a spiking neural network that controlled the eye move-
ments of SIMNOS, learnt associations between motor output
and visual input, and used models of imagination and emotion
to avoid negative stimuli. All these systems provide an interface
toward specific robotic platforms able to deal with spiking/digital
inputs and convert them appropriately. Together with robotic
platform restrictions, they do not provide a framework for the
conversion, allowing the user to write his own transfer function.
A more generic system which permits dealing with simulated
robotic platforms is AnimatLab (Cofer et al., 2010b). AnimatLab
currently has two different neural models that can be used. One is
an abstract firing rate neuron model, and the other is a more real-
istic conductance-based integrate-and-fire spiking neural model.
It is also possible to add new neural and biomechanical models as

design and run basic experiments in neurorobotics using simulated robots and simulated
environments linked to simplified versions of brain models. We illustrate the capabilities
of the platform with three example experiments: a Braitenberg task implemented on a
mobile robot, a sensory-motor learning task based on a robotic controller, and a visual
tracking embedding a retina model on the iCub humanoid robot. These use-cases allow
to assess the applicability of the Neurorobotics Platform for robotic tasks as well as in
neuroscientific experiments.

Keywords: neurorobotics, robot simulation, brain simulation, software architectures, robot programming, web
technologies

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

3

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

plug-in modules. There are several different joint types and a host
of different body types that can be used. Although AnimatLab
does not provide a comprehensive set of neurons and learning
models, some behavior implementation based on this tool is
available such as locust jumping (Cofer et al., 2010a) or dominant
and subordinate crayfish (Issa et al., 2012). Despite some of the
mentioned tools represents a good attempt to connect artificial
brains to robots, these are not very common in the robotic and
neuroscientific communities likely due to the limitations we have
underlined (robotic platform restrictions, lack of a framework for
conversions). For our framework, we decided to rely on widely
used simulators for the brain models as well as for robots and
environments. This strategic choice should allow to easily attract
users of these platforms. We embedded these simulators in a
comprehensive framework that allows the user to design and
run neurorobotic experiments. In line with our approach, Weidel
et al. (2015, 2016) proposed to couple the widely used neural
simulation tool NEST (Gewaltig and Diesmann, 2007) with the
robot simulator Gazebo (Koenig and Howard, 2004), using the
MUSIC middleware (Djurfeldt et al., 2010).

Here, we describe the first release of the HBP Neurorobotics
Platform, which offers scientists and technology developers a set
of tools, allowing them to connect brain models to detailed simu-
lations of robot bodies and environments and to use the resulting
neurorobotic systems in in silico experiments and technology
development. The Neurorobotics Platform (NRP) also provides
a comprehensive development framework including editors for
creating experiments, environments, and brain and robot mod-
els. These tools are accessible via the web allowing them to use
the platform without tedious installation of software packages.
Moreover, through the web, researchers can collaborate and share
their models and experiments with their colleagues or with the
scientific community.

Although the capabilities to model virtual robots and envi-
ronments already exist as confirmed by the mentioned works,
and although various labs have created closed-loop setups with
simple brain models (Ros et al., 2006; Denoyelle et al., 2014), this
platform is the first to allow the coupling of robots and detailed
models of the brain. This makes it possible to perform experi-
ments exploring the link between low-level brain circuitry and
high-level function.

The aim of this platform is twofold: from one side, the platform
can be used to test neuroscientific models of brain areas, or even
reconstruction of these areas based on neurophysiological data;
on the other side, roboticists can take advantage of such a plat-
form to develop more biologically inspired control architectures.
The physical and neural simulation are properly synchronized,
and they exchange data through transfer functions that translate
sensory information coming from the robot (camera image,
encoders, etc.) into input for the brain (current and spikes) from
one side and the network output into motor commands from the
other. Additionally, the platform also provides a web interface,
so that it can be easily accessed and used from a broader user
base. From this web interface, the user can also access the editors
that are used to construct experiments from scratch and run the
experiments without any software installation, benefiting from
the available computing and storage platforms that have been

made available to support the NRP. Therefore, the NRP provides
a complete framework for neurorobotics experiment design and
simulation. One of the pillars of the NRP development is the reuse
and extension of existing software, thus many components were
implemented using suitably chosen existing software.

2. plATFoRM ReQUIReMenTS

2.1. Functional Requirements
In order to obtain the functional requirements for the NRP, we
first determined which features are needed for the creation of a
neurorobotic experiment. In that, we followed software engineer-
ing concepts and terminologies to itemize platform features as
requirements (IEEE, 1998). These features can be divided into
two categories: design features and simulation features, each with
its own functional requirements.

During the design of a neurorobotic experiment, the user
should be able to define all of its properties, and this includes

•	 the design of a suitable Robot model, by defining both kine-
matic and dynamic properties as well as the appearance, either
from scratch or from preexisting models;

•	 the possibility to create a rich Environment models in which
the robot can operate, by using a library of objects;

•	 the design of a Brain model, either from scratch or by selecting
an existing model, that will be coupled to the robot;

•	 Brain–Body Integration, in order to specify how the brain
model and the robot should be coupled in terms of sensory
and motor data exchange to create a Neurobot;

•	 the capability to change dynamic properties of the Experiment
itself, like defining events that can be triggered during the
simulation and appropriate response behaviors.

When all properties are defined, the simulation can start.
During the execution, the NRP should provide

•	 World maintenance and synchronization mechanisms in
order to not only simulate both the physics and neural models
but also to synchronize the two simulations and exchange data
between them, providing a closed-loop control mechanism, as
defined in the design phase. It must be possible to start, pause,
stop, and reset the simulation. The simulation should react to
the triggered events previously defined;

•	 a proper Interactive visualization of the running simulation,
comprising a GUI and utilities to see details of the simulation
like brain activity or robot parameters. Moreover, the user
should be able to live edit and interact with the simulation once
it is started, using the same design features described above.

A complete list of functional requirements can be found in
Appendix A, while an overview of the platform functionalities is
shown in Figure 1.

2.2. non-functional Requirements
Several non-functional requirements were also defined:

•	 usability and user experience—the platform should be easily
accessible to a wide range of users that possibly have no
experience in either the neuroscientific or robotic fields. This

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Brain Brain-Body
Integra�on Robot Environment

ngiseD
/

gnitidE
noitalu

miS

Interac�ve
Visualiza�on

Experiment

Synchroniza�on
mechanism

Neurobot

FIgURe 1 | Functional overview of the neurorobotics platform. Using the design/editing features of the platform, the user is able to create a neurorobotic
experiment comprising of a brain model integrated with a robotic body (Neurobot) that interacts in a dynamic environment. The experiment is then simulated by a
synchronized neural-physics simulation, and the results can be displayed in an interactive fashion.

4

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

should be achieved by a user-centric design with intuitive
tools and a consistent user experience. Moreover, the platform
should also provide an additional user level in order for expert
users to have more detailed design capabilities.

•	 open source—the NRP should rely on existing building blocks,
and in particular on open source ones, as the platform has to
be released to a wide audience.

•	 interoperability—each software component that allows to save
or load data should use, wherever possible, well-known data
formats.

•	 software quality—in order to ensure software quality, the
development of the platform should follow software engineer-
ing practices such as keeping a task tracking system, using
version control with code review and continuous builds, and
employing standard software development methodologies.

2.3. Integration with other hBp platforms
The NRP is one of six platforms developed in the Human Brain
Project. In addition to the Neurorobotics Platform, the HBP devel-
ops a Neuroinformatics Platform, a Brain Simulation Platform, a
High Performance and Data Analytics Platform, a Neuromorphic
Computing Platform, and a Medical Informatics Platform. Most
of these offer their services through the web and are built on top
of a common set of APIs and services, called HBP Collaboratory
Portal. It provides the following services:

•	 Authentication, access rights, and user profiles. The users are
provided with a Single Sign-On mechanism so they can use
the same credentials to access every HBP platform.

•	 Document repository. The users have access to a document
repository in which they can store and manage their projects.
It supports one of NRP’s requirements, namely, the possibility
for the users to share their models (brain, connections, envi-
ronment, robots, or experiments) with team members.

•	 Collaboratory API. A web-based application with associated
libraries allowing every platform’s web interface to have the
same look and feel, and to be implemented as a plugin within
the Collaboratory Portal.

All the HBP platform should provide some level of integra-
tion among each other. For this reason, short-term future
development plans include the integration of the Neurorobotics
Platform with the Brain Simulation Platform, the Neuromorphic
Computing Platform, while in the long-term integration with the
High Performance Computing and Analytics Platform will also
be provided.

The Brain Simulation Platform aims at providing scientists
with tools to reconstruct and simulate scaffold models of brain
and brain tissue using data from within and outside the HBP.
The Brain Simulation Platform will be integrated with the NRP
for simulating brain models at various detail levels. Moreover,
alongside the Brain Simulation Platform, scaffold brain models
will be gathered and they will be available for usage in the
platform.

The Neuromorphic Computing Platform provides remote
access to large-scale neuromorphic computing systems built in
custom hardware. Compared to traditional HPC resources, the
neuromorphic systems offer higher speed (real time or acceler-
ated simulation time) and lower energy consumption. Thus, the
integration of the platform will provide an alternative neural
simulation backend more suitable for simulations that require
a high computational burden, such as in experiments involving
plasticity and learning.

3. SoFTWARe ARchITecTURe

The Neurorobotics Platform is based on a three-layer architec-
ture, shown in Figure 2.

The layers, starting from the one furthest from the user, are
the following:

 1. the software components simulating the neurorobotics
experiment;

 2. the REST server or Backend;
 3. the Experiment Simulation Viewer (ESV), a graphical user

interface, and the Robot Designer, a standalone application
for the design of physical models.

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Experiment
Simula�on Viewer

+
Editors

Backend Closed Loop Engine
+

Brain Interface & Body
Integrator

HTTP

High level
simula�on control

Low level
simula�on control

World simulator

Brain simulator

Simula�on diagnos�cs

World interac�on
Robot control

Brain control

Robot
Designer

Standalone: provides
robot models to be
used within the
pla�orm.

Brain communica�on

Robot communica�on

FIgURe 2 | Architectural overview of the platform. From left to right, three layers can be distinguished: the user interface (Experiment Simulation Viewer), the
services connecting the user interface to the simulations (implemented in the Backend), and the internal computations, comprising the two simulations and the
synchronization between them.

5

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

The first layer comprises all the software components that
are needed to simulate a neurorobotics experiment. The World
Simulation Engine (WSE) is responsible for simulating robots and
their environment. The Brain Simulator is responsible to simulate
the neural network that controls the robot. The Closed Loop
Engine (CLE) implements the unique logic of each experiment
and orchestrates the interaction between the two simulators and
the ESV.

The second layer contains the REST server, also referred to
as Backend, which receives requests from the ESV and forwards
them to the appropriate components, which implements the
requested service, mainly through ROS. The REST server thus
acts as a relay between the graphical user interface (the frontend),
and the various simulation engines needed for the neurorobotics
experiment. For practical reasons, the services provided by the
REST server are tightly coupled with the high-level functionality
shown in the ESV GUI. Thus any graphical control interacting
with the REST server has a corresponding service. Actions that
change the state of the simulations, such starting, stopping, or
pausing a simulation, are implemented as a single parametric
service.

The ESV is the web-based graphical user interface to all
neurorobotics experiments. Using the ESV, the user can control
and visualize neurorobotics experiments. The ESV also provides
a number of editors to configure the experiment protocol as well
as the parts of the experiment such as the environment, the brain
model, and the connection between brain and robots (Brain
Interface and Body Integrator). The Robot Designer is a tool that
was developed to allow the process of designing robot models that
can be included in simulation setups executable on the NRP. This
tool is developed as a plugin for the 3D modeling tool Blender 3D.2

3.1. Brain Simulator
The goal of the Brain Simulator is to simulate a brain circuit,
implemented with a spiking neural network (SNN).

2 https://www.blender.org/.

Several simulators for SNNs exist, with different levels of detail,
ranging from more abstract point neuron simulations, which
consider neural networks as directed graphs, to the morphologi-
cally accurate ones where the properties of axons and dendrites
are taken into account.

Inside the NRP, the simulator currently supported is NEST
(Gewaltig and Diesmann, 2007), a point neuron simulator with
the capability of running on high-performance computing plat-
forms, that is also one of the simulation backends of the Brain
Simulation Platform. NEST is supported through the use of the
PyNN abstraction layer (Davison et al., 2008) that provides the
same interface for different simulators and also for neuromorphic
processing units, i.e., dedicated hardware for the simulation of
SNN such as SpiNNaker (Khan et al., 2008), provided by the
Neuromorphic Computing Platform. Both NEST and PyNN
provide convenient mechanisms to design neural networks.
Furthermore, they are among the most used tools in the neurosci-
entific community. On the other hand, the only APIs they provide
are written in Python, which heavily constraints the choice of the
language to use for interacting with them.

3.2. World Simulator
In order to have realistic experiments, the accurate brain simula-
tion must be coupled with a detailed physics simulation. The
World Simulator component aims at delivering a realistic simula-
tion for both the robot and the environment in which the robot
interacts.

Gazebo was chosen as the physics simulator. It offers a multi-
robot environment with an accurate simulation of the dynamics,
in particular gravity, contact forces, and friction. This dynamic
simulation can be computed with different supported software
libraries like ODE (Drumwright, 2010) and Bullet (Coumans
et al., 2013).

Any communication with the simulated robot and control of
the simulation itself is done through the Robot Operating System
(ROS) (Quigley et al., 2009), which is natively integrated with
Gazebo.

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
https://www.blender.org/

6

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

ROS is a widely used middleware in the robotics community
and provides C++ and Python APIs to the user.

3.3. Brain Interface and Body Integrator
The Brain Interface and Body Integrator (BIBI) plays a crucial role
in the NRP, as it is the component that implements the connec-
tion between the robot and brain simulations. The main feature of
the BIBI is the Transfer Function framework. A Transfer Function
(TF) is a function that translates the output of one simulation
into a suitable input for the other. Thus, we can identify two main
types of transfer functions: the Robot to Neuron TFs translate
signals coming from robot parts such as sensor readings and
camera images into neuron signals such as spikes, firing rates, or
electric currents; the Neuron to Robot TFs convert neural signals
from individual neurons or groups of neurons into control signals
for robot motors. Thus, these two kinds of transfer functions close
the action–perception loop by filling the gaps between the neural
controller and the robot.

The TFs also extend beyond the previously described two
types. For example, the robot–brain–robot loop can be short-
circuited in order to bypass the brain simulation and use only
a classical robotic controller, thus resulting in a Robot to Robot
TF. This allows the comparison between a classical and a neural
implementation of a robotic controller with the same setup, by
simply switching from a transfer function to another. Moreover,
the data coming from both simulations can be sent out of the loop
(to a monitoring module) where it can be live plotted, elaborated,
stored, or exported for data analysis with external tools (Robot to
Monitor and Neuron to Monitor TFs).

In order to provide a proper abstraction layer toward the
simulators, generic interfaces are provided, which are then
implemented by specific adapters. From the robot simulator side,
the interface is modeled following the publish–subscribe design
pattern (Gamma et al., 1995), where, from one side, sensory
information is expected to be published by the robotic simulator
and the Robot to Neuron TF subscribes to the subject, receiving
the data, while on the other side the Neuron to Robot TF publishes
motor commands and the simulator is expected to subscribe and
execute them. This pattern is used by many robotics middlewares
such as ROS and YARP (Metta et al., 2006), thus there is minimal
work required in order to implement the adapters in such cases.
In the current implementation of the NRP, ROS Topic adapters
have been implemented. From the brain simulation side, the TFs
provide stimuli and measurements by using Devices. Devices are
abstract entities that have to be connected to the neural network,
either to a single neuron or to a neuron population. Among such
entities, there are spike generators and current generators (for the
input side), and spike recorders, population rates recorders, and
leaky integrators (for the output side). In the current implementa-
tion, devices are implemented as wrappers around PyNN objects
instances, providing general interfaces toward different neural
simulators.

The TF framework is implemented using the Python program-
ming language, where the business logic of each TF resides in a
function definition. A library of commonly used transfer func-
tions, including common image processing primitives and simple
translational models for motor command generation, is provided

alongside with the framework. Information about the TF connec-
tions is specified via a custom Domain Specific Language (DSL)
implemented with Python decorators that specify the type of
transfer function, the device types, and the neuron which they are
connected to, and the topics that the TF should subscribe to, or
on which topic the TF should publish (Hinkel et al., 2015, 2017).
An example of a transfer function implementation is displayed
in Listing 1.
lISTIng 1 | An example of transfer function code, translating an image
into spike rates.
@nrp.maprobotsubscriber(“camera”, Topic(’/robot/Camera’,
sensor_msgs.msg.image))
@nrp.mapspikesource(“red_left_eye”, nrp.brain.
sensors[0:3:2], nrp.poisson)
@nrp.mapspikesource(“red_right_eye”,nrp.brain.
sensors[1:4:2], nrp.poisson)
@nrp.robot2neuron()
def eye_sensor_transmit(t, camera, red_left_eye,
red_right_eye):

image_results = hbp_nrp_cle.tf_framework.tf_lib.
detect_red(image=camera.value)

red_left_eye.rate = image_results.left
red_right_eye.rate = image_results.right

In this example, it can be seen that through the use of the
decorators DSL several properties are specified, such as the type
of TF (Robot to Neuron), the devices toward the brain simula-
tion (spike generators firing with Poisson statistics attached to
the neuron population) and the input coming from the robotic
simulation (camera image published through a ROS topic). It
can also be noticed that the actual business logic is implemented
inside the function, and in particular, the image is processed
with a color detection filter implemented as part the TF library
provided alongside the platform.

The choice of Python for the TF framework was the most
natural one, given the fact that both the chosen physics and
neural simulators provide Python APIs. Consequently, the rest
of the server side NRP components have been written in Python.
In principle, this could raise performance issues when compared
with languages like C++. We chose to avoid fine tuning of the
performance of the developed components, as currently the
bottlenecks of a simulation reside in the physics and neural
simulators. This choice has also the advantage of simplifying
considerably the development process.

Internally, the complete BIBI configuration, comprising the
transfer functions, the robot model, and the brain model, is
stored as an XML file. Each transfer function can be saved either
as Python code in an XML tag or can be constructed from custom
XML elements which are later parsed in order to generate the
equivalent Python code. The second way of describing these func-
tions is better suited for the automatic generation of such XML
files, via graphical editors that could be used also by scientists
with no experience in Python.

3.4. closed loop engine
The Closed Loop Engine (CLE) is responsible for the control of
the synchronization as well as for the data exchange among the
simulations and the TFs. The purpose of the CLE is to guarantee

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

created ini�alized started paused

stopped

halted

ini�alize
pausestart

stop

stop start
reset

stop

failed

FIgURe 4 | lifecycle of a simulation in the nRp. During a normal cycle,
the simulation will start from the created state, passing through initialized as
soon as the resources are instantiated, then going through the started state
once the execution is initiated, and finally in the stopped state. During the
execution, the simulation can be paused at any time, while if any error occurs
during the normal lifecycle the simulation is halted.

World sim.R-to-N TFCLE N-to-R TF Brain sim.

Simulate(dt)
Simulate(dt)

Call-TF()
GetStatus()

Call-TF()
GetStatus()

Update()

Update()

FIgURe 3 | Synchronization between the components of a simulation,
as orchestrated by the cle. In a first phase, the two simulations are run in
parallel. Afterward, each transfer function gathers data from simulations and
computes the appropriate inputs for the next simulation step.

7

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

that both simulations start and run for the same timestep, and
also to run the TFs that will use the data collected at the end of the
simulation steps. Figure 3 shows a sequence diagram of a typical
execution of a timestep: after the physics and neural simulations
have completed their execution in parallel, the TFs receive and
process data from the simulations and produce an output which
is the input for the execution of the next step. The idea behind the
proposed synchronization mechanism is to let both simulations
run for a fixed timestep, receiving and processing the output of
the previous steps and yielding data that will be processed in the
future steps by the concurrent simulation. In other words, data
generated by one simulation in the current timestep cannot be
processed by the other simulation until the next one. This can
be read as the TFs introducing a delay of sensory perception and
motion actuation greater than the simulation timestep.

We decided not to use MUSIC for the synchronization in this
first release, even if it was shown to be working by Weidel et al.
(2015, 2016), in order to ease the communication between brain
and world simulations without introducing any middle layer.
Moreover, relying on the already existing Python APIs for the
communication with the two simulators had the effect of simplify
the development process.

Besides orchestrating running simulations, the CLE is also
responsible of spawning new ones, by creating new dedicated
instances of the World Simulator and the Brain Simulator, and a
new instance of the orchestrator between the two.

3.4.1. Simulation Control
During its life cycle, each simulation transitions through several
states, as depicted in Figure 4. At the beginning, a simulation
is in state created, and it will switch to state initialized once the
CLE is instantiated. Up to this point, no simulation steps have
been performed yet. Once the simulation is started, the CLE will
start the interleaving cycle that can be temporarily interrupted by
pausing the simulation (paused) or preemptively terminated by
stopping the simulation (stopped). If any error occurs during the
execution or during the transitions between states, the simulation

will pass automatically to the state halted. The reset transition can
be considered parametrized, as it allows restoring to their initial
status separate parts of the simulation singularly. Currently, the
resettable parts in a simulation are the robot pose, the brain
configuration, and the environment.

Thanks to the possibility of pausing and restarting the closed
loop cycle during the simulation execution, it was possible to add
features that modify simulation properties at runtime, without
the need to restart the simulation from scratch. These features
include support for transfer function adding, editing and removal,
brain model, and environment editing. Using these features, it
is possible to test different configurations of the simulation and
immediately see the effects of them, without having to wait for a
complete restart.

From the point of view of the implementation, the timestep of
the physics simulation is sent to Gazebo through a ROS service
call, while the brain simulation is directly run for the desired
timestep with a PyNN call, as it can be observed from the archi-
tecture depicted in Figure 5. ROS service calls and the PyNN calls
are implemented through generic adapter interfaces and perform
a client-server interaction. Hence, in principle, a CLE instance
can interact with different simulators than the ones currently
supported (Gazebo and NEST). This abstraction layer, besides
providing the possibility to change with relative ease the underly-
ing simulators, simplifies the update process of the simulators, by
limiting the number of files that need to be changed in response
to a possible API update.

3.4.2. State Machines for Simulation Control
In real experiments, it is often the case that the environment
changes in response to occurring events, generated by the behav-
ior of the subject, by the experimenter or automatically generated
(i.e., timed events). Thus, in order to reproduce this behavior, the
possibility to generate events that can influence the environment
was added to the platform. In particular, the user can interact
with some objects without having to interrupt the simulation,
like changing the brightness of lights or screen colors, and an
event system is provided. The event system is implemented with
a state machine that is programmable by the user. In the current
implementation, support for timed events is provided, allowing

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

FIgURe 5 | Architectural overview of the cle and of the communication layers. The CLE orchestrates the two simulations and performs the data exchange
through generic adapter interfaces. It also provides two interfaces, one for controlling an ongoing simulation and one for providing a new one, by instantiating a
neural simulator and a physics simulator. In the current implementation, adapters for accessing Gazebo physics simulation via ROS and for accessing NEST neural
simulation via PyNN are provided. In particular, robot data are accessed through ROS services and topics, and the physics simulation is controlled through ROS
services.

8

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

the user to program changes in the environment that have to
occur at specific points in time.

The event system is managed by the State machines manager,
implemented using the SMACH state machine framework
(Bohren and Cousins, 2010) that is already integrated into
ROS. Using such a framework, it is possible to program timed
events that directly call Gazebo services in order to modify the
environment.

3.5. Backend
The Backend is the component connecting the user interface
to the core components of the platform, exposing a web server
implementing RESTful APIs on the user interface end point and
forwarding processed user requests via ROS on the other end
point. This component is the first handler for user requests. In
case they could not be completely managed within the backend,
they are forwarded either to the CLE or to the State machines
manager that will eventually complete the request processing,
interacting, if necessary, with the simulators. An overview of the
Backend architecture and of the interaction with other compo-
nents is depicted in Figure 6.

Actions provided by the backend to the user interface (ESV)
include experiment listing and manipulation, simulation listing,
handling and creation, and gathering of backend diagnostic and
information.

Every available experiment on the platform is identified by
a name and a group of configuration files, including a preview
image to be showed on the ESV and files representing environ-
ment, brain, state machines, and BIBI, where neural populations
and transfer functions are stored. Experiment listings and manip-
ulation APIs allow the user to list all the available experiments

on the server as well as retrieving and customize singularly the
configuration files of the experiment.

In the NRP setting, a simulation is considered as an instance of
one of the available experiments. In order to create a new simula-
tion, the user has to proceed in a different way depending on
whether the NRP is accessed within or outside of the Collaboratory
Portal. If users are accessing from the Collaboratory Portal, they
are able to clone the configuration files related to one of the avail-
able experiments on the Collaboration storage they are using
and instantiate that local copy of the experiment. The backend
allows users to overwrite said configuration files as well as saving
CSV recordings of simulation data directly on the storage. In case
a user is not working from the Collaboratory Portal, they can
instantiate an experiment choosing directly from the experiment
list, and they can edit it without having to instantiate a local copy.

Once a simulation is created, the backend allows the user to
retrieve and change its current state according to the simula-
tion lifecycle depicted in Figure 4, by interfacing with the CLE.
Other APIs provide functionalities for retrieving and editing
at runtime the brain configuration, the state machines, and
the transfer functions, delegating again the task to the CLE.
Furthermore, information about the simulation metadata,
brain populations, and environment configuration is available
through dedicated APIs.

For diagnostic purposes, the backend provides some APIs for
retrieving the errors which have occurred on the server as well as
the version of the backend itself and the CLE.

3.6. experiment Simulation Viewer
The Experiment Simulation Viewer is the user interface to the NRP.
It is implemented as a web-based application, developed using a
modern web software stack exploiting established open-source

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Simula�on service

Simula�on controller

Experiment service

Watchdog

Simula�on
provider

Simula�on
controller

ROS

ROS

State
machines
manager

ROS

Gazebo

ROS

ROS

create new
simula�on

simula�on
start, stop,
pause, ...

state machine
start, stop,

reset

transfer
func�on add,
edit, delete

simula�on
crea�on API

simula�on
control API

experiment
informa�on API

server info &
diagnos�cs API

REST

REST

REST

REST

Backend CLE

FIgURe 6 | Architectural overview of the Backend. User inputs coming from the ESV are sent to the Backend via REST APIs. These requests are then
dispatched to the CLE or to the State machine manager that will handle them by forwarding the appropriate commands to Gazebo.

9

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

software. The ESV is currently integrated in the Collaboratory
Portal (see Figure 7A) using the Collaboratory APIs. By building
it using standard web technologies, cross-platform support, also
for mobile devices, is enabled. The downside of this choice is the
added complexity of using translation layers, albeit lightweight
ones, for the interaction with server-side components.

The ESV simulation interface embeds a 3D view that allows
the user to see and navigate through the virtual environment,
and a user bar for simulation control (e.g., for playing, pausing,
resetting, or stopping the ongoing simulation). It also provides
means for editing objects by altering their attributes and monitor-
ing brain activity and the state of the embodiment, on a running
simulation. Furthermore, the simulation interface hosts the tools
that allow the user to design and edit an experiment, explained in
depth in Section 3.6.3. Any modifications to the running simula-
tion can be exported either on the user computer or saved on
Collaboratory storage.

In the following sections, we start presenting the ESV user
interface, its architecture, and then we continue describing the
design tools.

3.6.1. User Interface
Entering the ESV, the user is presented with a list of available
experiments (see Figure 7A). For each experiment, the user can
choose to launch a new simulation, or to join an already launched
one as a spectator; it is also possible to launch an instance of an
existing simulation while uploading a custom environment in
which it will be executed, thus replacing the original one.

The user starting a simulation is called the owner of that simu-
lation whereas any other user is called a watcher. The owner has
full control over his simulation, being able to start, pause, stop, or
reset the simulation and interact with the environment while it
is running. Other features like monitoring or navigation into the
scene are accessible to both owners and watchers.

Of particular interest are the monitoring features (Figure 7B).
The Spike Monitor plots a spike train representation of the

monitored neurons in real time. Monitored neurons must be
specified by transfer functions, as described in Section 3.3.

The Joint Monitor plots a line chart representation of the
joint properties of the robot in real time. For every joint selected,
properties like position, velocity, and effort can be chosen.

The goal of these monitoring tools is to get live insights on how
the simulation performs. Both spike data and joint data can also
be saved in CSV format for further off-line analysis, see Section
3.6.3.3.

3.6.2. Architecture
In order to have a coherent user interface and experience through-
out, all the tools developed in the Human Brain Project, including
the NRP User interface are implemented as web applications. An
architectural overview is shown in Figure 8.

The application framework of choice is AngularJS.3 AngularJS
is a Model View Controller (MVC) Web Framework for devel-
oping single-page applications. Using AngularJS services, the
interaction with the NRP Backend, which provides the API for
the simulation control, is realized via standard REST calls.

The Rendering of the 3D view of the virtual environment is
performed by Gzweb, Gazebo’s WebGL client. It comprises two
main parts: gz3d and gzbridge, which are, respectively, respon-
sible for visualization and for communicating with Gazebo’s
backend server gzserver.

To enable the communications with the CLE and Gazebo via
ROS, the ESV employs roslibjs, a JavaScript library. Roslibjs in
turn interacts via WebSockets with rosbridge, a tool providing a
JSON API to ROS functionality for non-ROS programs.

3.6.3. Editors
In order to design the experiment to be simulated, the NRP
provides the user with a complete array of tools. Thanks to these

3 https://www.angularjs.org/.

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
https://www.angularjs.org/

FIgURe 7 | The experiment Simulation Viewer. Through the Collaboratory Portal (A), the user can choose between several predefined experiments or create his
own experiment based on templates. Some of the features of the Collaboratory Portal such as a navigation pan and a group chat are shown. (B) The ESV Main
View, where an experiment is being executed. The user interface at the bottom allows the user to interact with the simulation and displays information about
simulation time. Some widgets, togglable from the user bar, allow the user to monitor brain activity in term of spike trains or joint values of the simulated robot.

10

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

ESV core

gz3d

roslibjs

Backend

gzbridge Gazebo

rosbridge

CLE

websocket

websocket Gazebo API

/monitor/spike_recorder
/ros_cle_simula�on/status
/ros_cle_simula�on/cle_error

ROS
ROS

Angular JS

Angular JS

GUI

Joint states
Robot control channels
Robot sensor channels
Custom scene control

ESV

REST

ROS

FIgURe 8 | Architectural overview of the eSV and its outgoing communications. The ESV core interacts with the Backend via REST APIs to control the
simulation. Two websocket channels bypass the Backend and allow the ESV to interact directly with Gazebo and the CLE. The gzbridge channel is used for
gathering information about the scene rendering. The rosbridge channel is used for collecting information related to brain spikes and joint angles, which is shown on
appropriate monitoring widgets in the GUI, and to get information about simulation status and possible errors.

11

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

tools, it is possible to configure all the aspects of an experi-
ment: Environment, Transfer Functions, Brain, and Experiment
Workflow.

3.6.3.1. Environment Editor
The purpose of the Environment Editor is to allow the user of
the platform to set up the scene in which the simulation will
run, either starting from scratch or editing one from an existing
experiment.

The Environment Editor is seamlessly integrated into the ESV
application: this dramatically shortens the time needed to proto-
type the experiment. Switching between simulation and editing
the environment is a very fast process: the user can immediately
simulate the interaction of the robot with the new environment
and, if not satisfied, directly modify it again.

While running the environment editor, the user is able to
move (e.g., translate or rotate) or delete existing objects in the
scene, or to place new objects by choosing them from a list of
models (Figures 9A and 10).

When the editing of the scene is completed, the user can export
the result into the Simulation Description Format (SDF),4 either
on a local workstation or on the Collab storage of the respective
experiment. Once saved, the environment can be loaded at a later
time into another different, new or existing, experiment.

Importing a new environment in an existing experiment does
not change in any way the workflow of the experiment itself, i.e.,
it will keep its transfer functions, state machines, the BIBI, and
the robot involved.

3.6.3.2. Brain Editor
The Brain Editor (Figure 9D) allows the user to upload and edit
custom brain models as PyNN scripts (Davison et al., 2008).

The PyNN script describing the brain model used in the
current experiment is shown in a text editor featuring Python
keyword and syntax highlighting. It is also possible to define

4 http://sdformat.org/.

populations (i.e., sets of neurons indices) that can be referred to
in transfer functions.

Once the user has finished editing, the new model can be
applied without restarting the whole simulation.

3.6.3.3. Transfer Functions Editor
The Transfer Functions (TFs) describe how to transform simula-
tor specific sensory data (such as image, joint angles, forces, etc.)
to spiking activity for neural network simulation and vice versa.
TFs are defined as Python scripts exploiting the DSL described
in Hinkel et al. (2015). Like for the Brain editor, the Transfer
Functions Editor (Figure 9B) displays these scripts and enables
the user to change them in a text editor pane found in the menu.

From within the editor, the user can create and edit TFs as well
as save them to and load them from files. Once edited, the changes
can be applied to the simulation. Thus, the user can test immedi-
ately the robots’ behavior and, possibly, modify it again resulting
in a very short cycle of tuning and testing. Every uploaded transfer
function is checked for syntax errors, and several restrictions for
Python statements are applied for security reasons.

Furthermore, the user can log TFs’ data to files in the
Collaboratory storage to analyze them at a later time. The data
format used is the standard Comma Separated Values (CSV).
Like for the other editors, the edited TFs can be downloaded on
the user’s computer or saved into the Collaboratory storage.

3.6.3.4. Experiment Workflow Editor
The workflow of an experiment is defined in terms of events
which are either triggered by simulation time, user interaction, or
state of the world simulation. In the current implementation, all
events manipulate the simulated environment, as no stimulation
of the brain or manipulation of the brain-controlled robot can be
performed by the State machine manager.

The workflow is specified in Python code exploiting SMACH
(Bohren and Cousins, 2010)—a state machine library integrated
into ROS. This approach enables users to specify complex work-
flows in terms of state machines.

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
http://sdformat.org/

FIgURe 9 | The eSV editors’ menu panes. With the Environment Editor (A) the user can add an object to the environment, choosing from a library of models.
The Transfer Function editor (B) allows a live editing of the Transfer Functions, without the need for restarting the simulation. SMACH State Machine Editor (c) that
currently implements the Experiment Workflow Editor, actions that have to be performed by the State machine manager can be defined. The brain model used in the
simulation can be edited with the Brain Editor (D).

12

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

FIgURe 10 | Adding and editing a new object with the eSV environment editor. The user can change object properties by using appropriate handles or by
manually inserting property values (e.g., position coordinates) in a form displayed in a widget.

13

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

A state machine controlling an experiment interacts with the
running simulation by publishing on ROS topics and calling ROS
services and can monitor any simulation property published on
ROS topics (e.g., simulation time, sensor output, and spiking
activity of brain). Like the other editors, the Experiment Workflow
Editor (Figure 9C) displays Python scripts and allows the user to
change them in a text editor.

3.7. Robot Designer
In order to build neurorobotic experiments, the NRP not only
has to offer scientists a rich set of robot variants to choose from
but also give them the opportunity to integrate virtual counter-
parts of existing robots in their lab, or robots with the desired
morphology for a special, given task. The Robot Designer (RD)
hence aims at being a modeling tool for generating geometric,
kinematic, and dynamic models that can be used in the simula-
tion environment.

The development from scratch of a custom software (either
web or desktop) for modeling and designing a robot is an enor-
mous undertaking, so we decided to adopt existing solutions. In
particular, no reasonable web solutions were found, and adapting
existing solutions for web would require a considerable effort
which would not be counterbalanced by the possible benefits.

We chose to use Blender (a powerful and extendable open source
software) among the existing modeling softwares, due to its avail-
ability for a wide range of platforms with a simple installation
process.

Existing extensions for Blender with similar goals were tak-
ing into account when developing the Robot Designer. Most
notably these are the Phobos project5 and the RobotEditor of the
OpenGrasp simulation suite (León et al., 2010; Terlemez et al.,
2014). The RobotEditor project was finally chosen as the basis of
the Robot Designer after an evaluation with competing projects.
Afterward, it went through a major refactoring and has been
extended by components required for the NRP. These include
the aspects of importing and exporting files with support for the
Gazebo simulator, additional modeling functionalities, a refined
user interface, and data exchange with the Collaboratory storage.

The RD provides users with an easy-to-use user interface that
allows the construction of robot models and defining kinematic,
dynamic, and geometric properties. The robotics-centered user
interface of the RobotEditor has been redesigned and allows the
user to define kinematic models of robots by specifying segments

5 https://github.com/rock-simulation/phobos.

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
https://github.com/rock-simulation/phobos

FIgURe 11 | The Robot Designer. Using the Robot Designer the user is able to edit kinematic properties of a robot model (A). An example of a completed model
of the six-legged walking machine Lauron V (Roennau et al., 2014) with a collision model with safety distances is shown in (B). Deformable meshes can be
transformed into disjoint rigid bodies for collision model generation (c), by considering the influence of each joint onto the mesh vertexes, e.g., hip joint (D) and knee
joint (e) for a human leg.

14

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

and joints either using the Euler angles or following the Denavit–
Hartenberg convention (Denavit, 1955). The robot dynamic
model can be created through mass entities with inertia tensors
and controller type with parameters for joints. For geometric
modeling, the RD can rely on the vast 3D modeling capabilities
provided by Blender, although several additions were made for
the automation of robot-related tasks. Figure 11A shows on the
left the Robot Designer panel inside Blender while editing the
properties of a segment of a six-legged robotic platform, Lauron
V (Roennau et al., 2014). The plugin provides overlays for the 3D
view that shows reference frames and names for each robot joint,
thus facilitating editing.

The original code of the RobotEditor has been heavily
refactored, and the documentation for users and developers
of the robot designer and the core framework has been greatly
expanded. The core framework offers many additional features
such as resource handling, logging to external files, debug mes-
sages with call stacks, and the concept of pre- and postconditions
checking for validation of functionality.

Data exchange with the NRP and with ROS has been a major
aspect of the development of the Robot Designer. For this reason,
support for the widespread Unified Robot Description Format

(URDF)6 file format has been added and been improved in several
ways during the development. An XML schema definition file has
been generated for this file format which then made it easier
to generate language-specific bindings7 requiring only a small
interface between internal data types and the representation in
the XML document (see Section 3.3).

In addition to exporting raw URDF files, the Robot Designer
also supports novel features unique to the robot simulation of
the NRP. Above all, this includes generating input to a Gazebo
plugin loaded by the CLE. It automatically generates software
implementing necessary joint controllers for position and/or
velocity control. This additional information is not included in the
URDF standard and is stored together with the model in the same
file. For the user of the NRP, this means that different controller
types and parameters for each joint can conveniently be specified
directly in the designer and become available in the simulation
without the need of writing additional joint controller software
and its deployment on the platform servers. The persistent storage
and data exchange mechanisms of the Robot Designer offer the

6 http://wiki.ros.org/urdf/XML.
7 https://pypi.python.org/pypi/PyXB.

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
http://wiki.ros.org/urdf/XML
https://pypi.python.org/pypi/PyXB

TABle 1 | Summary of quality control statistics for the nRp repositories.

Repository Total
lines

Tests line coverage
(%)

Branch coverage
(%)

CLE 2,944 147 88 100
Backend 3,045 239 93 100
Frontend (ESV) 2,427 455 95 87
Experiment control 455 46 96 100

15

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

user the option to encapsulate models into installable and zipped
ROS packages.

Several modeling and automatization features were also added
to the already feature-rich modeling software. Collision models
can automatically be created from the geometric model of a robot
either by computation of its complete convex hull or an approxi-
mate convex hull with a fixed polygon count and an additional
safety distance to the original mesh (see Figure 11).

When generating collision models for deformable geometries,
the underlying mesh, where each vertex has a linear influence of
multiple joints, has to be transformed into several disjoint rigid
bodies. The RD can perform this transformation based on several
rules (see Figures 11C–E) as it is demonstrated on the showcase
of a mesh created with the MakeHuman8 project.

Finally, automatic robot generation from the mathematical
kinematic model has been added as an experimental feature.

The Robot Designer provides an easy installation process. To
download and activate the software, an installation script that
runs within Blender has to be executed by the user. This script,
the Robot Designer itself, and its documentation are hosted on a
publicly available repository.9

4. SoFTWARe DeVelopMenT
MeThoDology

The NRP is developed within the Scrum agile software develop-
ment framework (Schwaber and Beedle, 2002). The basic unit of
development, in Scrum parlance, is called a Sprint. It is a time-
boxed effort, which is restricted to a specific duration of either 2
or 3 weeks. This methodology provides a reactive environment,
able to deal with changing requirements and architectural
specifications.

The Scrum process includes daily stand-up meetings, where
each team of developers discusses about how they are working to
meet the sprint goals. At the end of the sprint, a review meeting
is held; the whole NRP team is present, and the members make
demonstrations of the software in stable development status.
Each completed task provides a new feature to the user, without
breaking compatibility with the current code base. Thus, at the
end of each sprint, there is a new shippable platform that provides
new features.

The NRP software process uses industry standards for quality
control. The acceptance criteria of the version control system
include the necessity of a code review by, at least, a second pro-
grammer, while a continuous integration system ensures that new
code does not introduce regressions by executing a set of unit tests.
Moreover, code coverage criteria ensure that at least 80% of the
code is covered during tests and coding standards are enforced by
automatic static code analysis tools (PEP8 and Pylint). Each build
in the continuous integration system also produces the software
documentation documenting the APIs and comprising software
usage examples. A summary of quality control statistics regarding
the main NRP repositories is presented in Table 1. No repository
has PEP8 or Pylint errors.

8 http://www.makehuman.org/.
9 https://github.com/HBPNeurorobotics/BlenderRobotDesigner.

5. USe cASeS FoR The
neURoRoBoTIcS plATFoRM

In order to assess the functionalities of the NRP, several experi-
ments were designed. These experiments, albeit simple in nature,
aim at demonstrating various features of the platform. The first
use case is just a proof of concept: a very simple brain model is
connected to a robot via TFs in order to have a complete action–
perception loop performing a Braitenberg vehicle experiment
(Braitenberg, 1986). Results show that the two simulations are
properly synchronized and the experiment is correctly performed.

Then, an experiment that makes use of the TF framework
capability of implementing classic robotic controllers was
designed and implemented. In this case, the robot–brain loop is
short-circuited, and a controller implemented inside a TF is used
to perform sensorimotor learning with a robotic arm.

Finally, in order to demonstrate the extensibility of the frame-
work, an already existing computational model of the retina was
integrated inside the platform and used to perform bioinspired
image processing.

5.1. Basic proof of concept: Braitenberg
Vehicle
This experiment was designed in order to validate the overall
functionalities of the NRP framework. By taking inspiration
from Braitenberg vehicles, we created an experiment where a
four-wheeled robot equipped with a camera (Husky robot from
Clearpath Robotics) was placed inside an environment with two
virtual screens. The screens can display a red or blue image, and
the user can interact with them by changing their displayed image
by using the ESV. The robot behavior is to turn counterclock-
wisely until it recognizes the red color and then to move toward
the screen displaying the red image.

The overall control architecture can be observed in Figure 12A.
Identification of the red color is done in a robot to neuron transfer
function where the image coming from the robot camera is pro-
cessed via a standard image processing library, OpenCV, in order
to find the percentage of red pixels in the left and right halves of
the image. Such information is then translated into firing rates and
sent as an input to Poisson spike generator devices. These devices
provide the input for a simple Brain Model comprising 8 neurons.
Among these, three are sensor neurons, receiving inputs from the
spike generator devices, and two are actor neurons, encoding the
generated motor commands. The behavior of the neural network
is to make one of the two actor neurons have a much higher fir-
ing rate compared to the other if no input encoding red pixels is
present, while making the two neurons fire with a firing rate that

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
http://www.makehuman.org/
https://github.com/HBPNeurorobotics/BlenderRobotDesigner

A

0 10 20 30 40 50 60 70
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

W
he

el
 m

ot
or

 c
om

m
an

ds

0 10 20 30 40 50 60 70

−100

−50

0

50

100

Time (s)

R
ed

 p
ix

el
s

(%
)

Left wheel

Right wheel

Red Pixels (%)

B

0 10 20 30 40 50 60 70

0

1

2

3

4

5

6

7

8

9

Time (s)

N
eu

ro
n

ID

C

FIgURe 12 | Braitenberg vehicle experiment. The control model (A) uses a color detection robot to neuron transfer function to convert the image into spike
rates, a simple spiking neural network comprising 8 neurons and a neuron to robot transfer function that translates membrane potentials into motor commands. The
motor signals sent to the robot wheels are directly correlated with the red pixels’ percentage in the camera image (B). This is also reflected by the changes in brain
activity during the trial (c).

16

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

is more similar the more red is present in the two image halves.
Two leaky integrator devices receive input from the actor neurons
and are used in the neuron to robot transfer function responsible
for the generation of motor commands. In particular, membrane
potential of these devices is used to generate motor commands
for the left and right wheels such that when the two actor neu-
rons’ firing rates differ, the wheels turn in opposite directions,
effectively turning the robot, and when the firing rates match, the
wheels move in the same direction, moving the robot forward.

The behavior of the experiment is shown in Figures 12B,C,
where it can be observed that every time there is a rise in the red
percentage on the image there is an increase in the spike rate of
neuron 7 so that it matches that of neuron 8. Then, the generated
motor commands change accordingly, and the wheels move in
the same direction, effectively moving the robot forward.

5.2. classic Robot controller:
Sensorimotor learning
The goal of the experiment is to learn sensorimotor coordina-
tion for target reaching tasks to be used in future manipulation
experiments. In particular, the experiment aims at predicting a
forward model for an anthropomorphic arm, by estimating the

tool center point (TCP) position from the current joint configura-
tion. In its current form, the experiment consists of two phases,
repeated every iteration: in the first phase, shown in Figure 13B,
the robot explores the working space and learns its kinematics by
performing random movements (i.e., motor babbling), observ-
ing its TCP position and corresponding joint configuration; in
a second phase, the model is evaluated by moving the arm in a
random position and comparing the TCP predicted by the learnt
kinematic model with the real one. This experiment does not
use any brain model, thus it shows that the NRP also provides a
framework for implementing classic robot controllers.

The control schema of the experiment is presented in
Figure 13A. The state machine for experiment control switches
between the different phases and communicates the current
phase to the robot controller. The robot controller implements a
supervised learning method, the Kinematic Bezier Maps (KBM)
(Ulbrich et al., 2012), and communicates directly to the simulated
robot in a robot to robot transfer function. During the learning
phase of each iteration, the robot controller moves the arm in a
random joint configuration and feeds this information, alongside
the real TCP of the attached end effector, to the KBM model.
During the evaluation phase, the arm is moved into another

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Experiment Control

State Machine

Learning Evalua�ng

Robot Controller
Robot to robot TF

Robot

Monitoring Module
Robot to monitor TF

Current phase

Mo�on command

Es�mated TCP

Joints state + TCP

Joints state + TCP

A

B

C

FIgURe 13 | Sensorimotor learning experiment. The control schema includes a state machine for experiment control using a classical robot controller and
monitoring module (A). The state machine switches between the two phases of the experiment (B): motor babbling phase for training, then evaluation of TCP
prediction. After each training iteration, the prediction error decreases, reaching 1 cm of accuracy for TCP estimation after 40 iterations (c).

17

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

random joint configuration, and the KBM model is used to
predict the position of the new TCP. This information is sent to
the monitoring module. The monitoring module also gathers
information from the simulation, such as the real TCP and joint
values. This information can be stored, displayed, or further
processed. In particular, this information is used to compute the
accuracy of the KBM prediction. Figure 13C shows the learning
curve for the training of the kinematic model, where the error is
computed as the distance in space between the predicted TCP
and the real one. It can be noticed that the error decreases during
training iterations, reaching an accuracy of 1 cm.

5.3. Integration of Bioinspired Models:
Retinal Vision
In order to have full biologically inspired closed loop controllers,
the transfer functions should also make use of neuroscientific
models of sensor information processing from one side and
motion generation on the other. As a first step in this direction, a
model of the retina was included in the NRP as a robot to neuron
transfer function (Ambrosano et al., 2016).

The model chosen for the integration was COREM, a computa-
tional framework for realistic retina modeling (Martínez-Cañada

et al., 2015, 2016), that provides a general framework capable of
simulating customizable retinal models. In particular, the simula-
tor provides a set of computational retinal microcircuits that can
be used as basic building blocks for the modeling of different
retina functions: one spatial processing module (a space-variant
Gaussian filter), two temporal modules (a low-pass temporal
filter and a single-compartment model), a configurable time-
independent non-linearity, and a Short-Term Plasticity (STP)
function.

The integration work proceeded by creating Python bind-
ings for the C++ COREM implementation and by adding the
appropriate functions that could feed the camera image in the
model and extract the retinal output without changing the core
implementation. Such implementation provides, as an output,
analog values representing the intensity of presynaptic currents
of ganglion cells (Martínez-Cañada et al., 2016). Thus, the retina
simulator now provides an interface that is callable by the transfer
function framework. Moreover, the retina model is defined via a
Python script, which can be uploaded by the user.

In order to test the proper integration of the retina simulator,
a first experiment that involves visual tracking of a moving target
via a retinal motion recognition was designed. The environment
setup consisted of placing the simulated robot (iCub humanoid

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Brain

Neuron to robot
Transfer func�on

Robot eye + camera

Mo�on control

Camera image

Color
Informa�on

Filtered ganglion cells informa�on

Robot to neuron TF
embedding re�na

L-cones M-cones

M-L+ bipolar M+L- bipolar

horizontal horizontal

+
--

+

++

amacrineamacrine

M-L+ ganglion
cells

M+L- ganglion
cells

- -

+ +

A

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

Time (s)

A
ng

le
 (r

ad
)

Eye position
Target estimate position

B

0 2 4 6 8 10

0

320

640

960

Time (s)

N
eu

ro
n

ID

C

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time (s)

A
ng

le
 (r

ad
)

Eye position
Target position

D

0 1 2 3 4 5 6

0

320

640

960

Time (s)

N
eu

ro
n

ID

E

0 0.5 1 1.5 2 2.5 3−0.8

−0.6

−0.4

−0.2

0

0.2

Time (s)

A
ng

le
 (r

ad
)

Eye position
Target position

F

0 0.5 1 1.5 2 2.5 3

0

320

640

960

Time (s)

N
eu

ro
n

ID

G

FIgURe 14 | Visual tracking with retinal image processing experiment. (A) The visual tracking model embeds a retina model capable of exploiting red–green
opponency as a robot to neuron transfer function, a two-layer brain model that filters color information and a neuron to robot transfer function that uses the filtered
target position information to generate motor commands for the eye. The model is able to correctly detect a moving target as it shown in panels (B,c), where the
target estimated position and corresponding brain activity are presented. When the eye moves, a more noisy retinal input is produced, but the brain model is still
able to filter it and performing step response tasks (D,e) and pursuit of linearly moving targets (F,g).

18

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

robot) in front of a virtual screen. The screen displayed a red
background with a green circle that can be controlled (target).
The overall control scheme can be observed in Figure 14A. This
model improves a previously designed visual tracking controller
implemented using the same Brain Model of the experiment
described in Section 5.1 (Vannucci et al., 2015). A model of
retinal red–green opponency was used as a robot to neuron

transfer function. This opponency is a basic mechanism through
which color information is transmitted from the photoreceptors
to the visual cortex (Dacey and Packer, 2003). This model has
two retinal pathways whose outputs are more sensitive to green
objects appearing in receptive fields that were earlier stimulated
by red objects and vice versa. Only one horizontal stripe of the
retinal output, intersecting the target position, is extracted and

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

19

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

fed into a brain model, via current generator devices. The brain
model consists of 1,280 integrate and fire neurons organized in
two layers. The first layer acts as a current to spike converter for
the retina ganglion cells, while in the second layer, every neuron
gathers information from 7 neurons on the first layer, acting as a
local spike integrator. Thus the second layer population encodes
the position of the edges of the target in the horizontal stripes
(corresponding to 320 pixels). Such information, encoded as a
spike count, is then used by the robot to neuron transfer function
in order to find the centroid of the target. Information about the
target centroid can also be used to generate motor commands
that make the robot perform visual tracking of the moving target.

The accuracy of target detection can be observed in Figure 14B,
where the results of a trial where the target was moved with a
sinusoidal motion and the robot eye was kept still are shown.
It can be noticed that the target motion is fully captured by the
model and this is reflected in the corresponding brain activity
(Figure 14C). Figure 14D shows the behavior of the controller
during a step response toward a static target: the eye is able to reach
the target, albeit with some overshooting. Comparing the brain
activity during this task (Figure 14E) with the target detection
one (Figure 14C), it is noticeable how the retinal output is noisier
during this trial. This is due to the intrinsic motion detection
capabilities of the retina as the activity of ganglion cells increases
when some motion is detected. Nevertheless, the second layer of
neurons in the brain model (lower half) is still able to filter out
activity of the first layer (upper half) not relative to the target,
thus its position can be computed with more accuracy. Similarly,
during a task where the robot had to follow a target moving lin-
early, the eye motion produces some noise in the retinal output
(Figure 14G), but the controller is still able to extract the target
position and successfully perform the task (Figure 14F).

6. FUTURe DeVelopMenTS

The features detailed in the previous sections describe the first
release of the Neurorobotic Platform. The development of the
platform will continue, in order to provide even more simulation
capabilities and features to the end user.

Short-term development plans include integration with the
Brain Simulation Platform and the Neuromorphic Computing
Platform, as described in Section 3, as well as an extension of the
CLE that will be able to orchestrate distributed brain simulations,
giving it the potential to simulate larger brain models in shorter
times, that will lead to the integration with the High Performance
and Data Analytics Platform.

The State machines manager will be extended in order to
respond also to event produced by the robot behavior, such as the
robot entering a certain area of the environment or performing
an action, allowing the user to design more complex experiments.
The user will also be able to design the experiment workflow
using a graphical support included in the ESV GUI, with a
timeline-based view that allows users to directly select objects
and properties in the 3D environment and create events based on
their state in the world simulation. Moreover, we plan to support
fully automated repetitions of experiments including success
evaluation for each trial.

Finally, the users will be able to upload environment built
offline from custom physicals models within the platform, greatly
enhancing the environment building capabilities. At the same
time, the Robot Designer will be extended to include support
of external debuggers, static type checking, and code analysis. It
is also planned to separate the core framework from the Robot
Designer and release it as an independent project to facilitate
plug-in development in Blender in general.

7. conclUSIon

This paper presented the first release of the HBP Neurorobotics
Platform, developed within the EU Flagship Human Brain
Project. The NRP provides scientists for the first time with an
integrated toolchain for in silico experimentation in neurorobot-
ics, that is, to simulate robots with neuro-controllers in complex
environments. In particular, the NRP allows researchers to design
simulated robot bodies, connect these bodies to brain models,
embed the bodies in rich simulated environments, and calibrate
the brain models to match the specific characteristics of the
robots sensors and actuators. The resulting setups can permit to
replicate classical animal and human experiments in silico and
ultimately to perform experiments that would not be possible in
a laboratory environment. The web-based user interface allows
to avoid software installation and the integration within the
HBP collaboratory portal gives access to storage and computing
resources of the HBP. Users can run experiments alone or in team,
and this can foster collaborative research allowing the sharing of
models and experiments.

In order to demonstrate the functionalities of the platform, we
performed three experiments, a Braitenberg task implemented on
a mobile robot, a sensory-motor task based on a robotic control-
ler, and a visual tracking embedding a retina model implemented
on the iCub humanoid robot. These use cases make it possible to
assess the applicability of the NRP in robotic tasks as well as in
neuroscientific experiments.

The final goal of the NRP is to couple robots to detailed mod-
els of the brain, which will be developed in the HBP framework.
It will be possible for robotics and neuroscience researchers to
test state of the art brain models in their research. At the cur-
rent stage, the results achieved with the NRP demonstrate that
it is possible to connect simulations of simple spiking neural
networks with simulated robots. Future work will focus on the
integration of the mentioned neural models. In addition to this,
the integration of high-performance computing clusters and
neuromorphic hardware will also be pursued in order to improve
execution time of spiking neural networks replicating detailed
brain models. All informations relative to the NRP, including
how to access it and where to find the code, are available on the
plaftform website: http://neurorobotics.net.

AUThoR conTRIBUTIonS

All authors listed have made substantial, direct, and intellectual
contribution to the work; they have also approved it for publica-
tion. In particular, EF, LV, AlAm, UA, SU, CL, AK, and M-OG
contributed to the design of this work; EF, LV, AlAm, UA, SU,

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
http://neurorobotics.net

20

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

JT, GH, JK, IP, OD, NC, and M-OG contributed to the writing
of the manuscript; ER and PM-C designed the retina model,
implemented it in the COREM framework, and collaborated in
integrating it into the NRP, together with LV, AlAm, and JK; GK,
FR, PS, RD, PL, CL, AK, and M-OG contributed to the concep-
tion and design of the NRP; and EF, LV, AlAm, UA, SU, JT, GH,
JK, IP, PM, MH, AR, DaPl, SD, SW, OD, NC, MK, AR, AxvoAr,
LG, and DaPe developed the NRP.

AcKnoWleDgMenTS

The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 604102 (Human Brain Project)
and from the European Unions Horizon 2020 Research and
Innovation Programme under Grant Agreement No. 720270
(HBP SGA1).

ReFeRenceS

Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J., Poyer, F., Duriez, C., et al. (2007).
“Sofa – an open source framework for medical simulation,” in MMVR
15-Medicine Meets Virtual Reality, Vol. 125 (Amsterdam, NL: IOP Press), 13–18.

Ambrosano, A., Vannucci, L., Albanese, U., Kirtay, M., Falotico, E., Martínez-
Cañada, P., et al. (2016). “Retina color-opponency based pursuit implemented
through spiking neural networks in the neurorobotics platform,” in 5th
International Conference, Living Machines 2016, Edinburgh, UK, July 19–22,
Vol. 9793, 16–27.

Benefiel, A. C., and Greenough, W. T. (1998). Effects of experience and environ-
ment on the developing and mature brain: implications for laboratory animal
housing. ILAR J. 39, 5–11. doi:10.1093/ilar.39.1.5

Bohren, J., and Cousins, S. (2010). The SMACH high-level executive [ros news].
Robot. Autom. Mag. IEEE 17, 18–20. doi:10.1109/MRA.2010.938836

Braitenberg, V. (1986). Vehicles: Experiments in Synthetic Psychology. Cambridge,
MA: MIT Press.

Briones, T. L., Klintsova, A. Y., and Greenough, W. T. (2004). Stability of synaptic
plasticity in the adult rat visual cortex induced by complex environment expo-
sure. Brain Res. 1018, 130–135. doi:10.1016/j.brainres.2004.06.001

Cofer, D., Cymbalyuk, G., Heitler, W. J., and Edwards, D. H. (2010a). Control of
tumbling during the locust jump. J. Exp. Biol. 213, 3378–3387. doi:10.1242/
jeb.046367

Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W. J., and Edwards, D. H.
(2010b). AnimatLab: a 3D graphics environment for neuromechanical simu-
lations. J. Neurosci. Methods 187, 280–288. doi:10.1016/j.jneumeth.2010.01.005

Coumans, E. (2013). Bullet Physics Library. Available at: www.bulletphysics.org
Dacey, D. M., and Packer, O. S. (2003). Colour coding in the primate retina: diverse

cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 13, 421–427.
doi:10.1016/S0959-4388(03)00103-X

Davison, A. P., Brderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D. A.,
et al. (2008). PyNN: a common interface for neuronal network simulators.
Front. Neuroinform. 2:11. doi:10.3389/neuro.11.011.2008

Denavit, J. (1955). A kinematic notation for lower-pair mechanisms based on
matrices. Trans. ASME J. Appl. Mech. 22, 215–221.

Denoyelle, N., Pouget, F., Viéville, T., and Alexandre, F. (2014). “Virtualenaction:
a platform for systemic neuroscience simulation,” in International Congress on
Neurotechnology, Electronics and Informatics, Setúbal, PT.

Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans, T. C.,
et al. (2010). Run-time interoperability between neuronal network simulators
based on the MUSIC framework. Neuroinformatics 8, 43–60. doi:10.1007/
s12021-010-9064-z

Drumwright, E. (2010). “Extending open dynamics engine for robotics simulation,”
in Simulation, Modeling, and Programming for Autonomous Robots, Volume
6472 of Lecture Notes in Computer Science (Berlin, DE: Springer), 38–50.

Gamez, D., Fidjeland, A. K., and Lazdins, E. (2012). iSpike: a spiking neural
interface for the iCub robot. Bioinspir. Biomim. 7, 025008. doi:10.1088/
1748-3182/7/2/025008

Gamez, D., Newcombe, R., Holland, O., and Knight, R. (2006). “Two simulation
tools for biologically inspired virtual robotics,” in Proceedings of the IEEE 5th
Chapter Conference on Advances in Cybernetic Systems (Bristol: IOP Publishing
Ltd), 85–90.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA: Addison-Wesley
Longman Publishing Co., Inc.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (neural simulation tool).
Scholarpedia 2, 1430. doi:10.4249/scholarpedia.1430

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks
in python. Front. Neuroinform. 2:5. doi:10.3389/neuro.11.005.2008

Hinkel, G., Groenda, H., Krach, S., Vannucci, L., Denninger, O., Cauli, N.,
et al. (2017). A framework for coupled simulations of robots and spiking
neuronal networks. J. Intell. Robot. Syst. 85, 71–91. doi:10.1007/s10846-016-
0412-6

Hinkel, G., Groenda, H., Vannucci, L., Denninger, O., Cauli, N., and Ulbrich,
S. (2015). “A domain-specific language (DSL) for integrating neuronal net-
works in robot control,” in ACM International Conference Proceeding Series
(New York, NY: ACM), 9–15.

IEEE. (1998). “IEEE recommended practice for software requirements specifica-
tions,” in IEEE Std 830-1998 (Washington, DC: IEEE), 1–40.

Issa, F. A., Drummond, J., Cattaert, D., and Edwards, D. H. (2012). Neural circuit
reconfiguration by social status. J. Neurosci. 32, 5638–5645. doi:10.1523/
JNEUROSCI.5668-11.2012

Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E., et al. (2008).
“SpiNNaker: mapping neural networks onto a massively-parallel chip multi-
processor,” in Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on
Computational Intelligence). IEEE International Joint Conference (Washington,
DC: IEEE), 2849–2856.

Koenig, N., and Howard, A. (2004). “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Intelligent Robots and Systems, 2004.
(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference, Vol. 3
(IEEE), 2149–2154.

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G., Igarashi, J.,
et al. (2014). Spiking network simulation code for petascale computers. Front.
Neuroinformatics 8:78. doi:10.3389/fninf.2014.00078

León, B., Ulbrich, S., Diankov, R., Puche, G., Przybylski, M., Morales, A., et al.
(2010). “Opengrasp: a toolkit for robot grasping simulation,” in Simulation,
Modeling, and Programming for Autonomous Robots (Berlin, DE: Springer),
109–120.

Martínez-Cañada, P., Morillas, C., Nieves, J. L., Pino, B., and Pelayo, F. (2015). “First
stage of a human visual system simulator: the retina,” in Computational Color
Imaging (Singapore, SG: Springer), 118–127.

Martínez-Cañada, P., Morillas, C., Pino, B., Ros, E., and Pelayo, F. (2016).
A computational framework for realistic retina modeling. Int. J. Neural Syst.
26, 1650030. doi:10.1142/S0129065716500301

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 043–048.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “ROS:
an open-source robot operating system,” in ICRA Workshop on Open Source
Software (Washington, DC: IEEE), 5.

Roennau, A., Heppner, G., Nowicki, M., and Dillmann, R. (2014). “LAURON V: a
versatile six-legged walking robot with advanced maneuverability,” in Advanced
Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference
(Washington, DC: IEEE), 82–87.

Ros, E., Ortigosa, E. M., Carrillo, R., and Arnold, M. (2006). Real-time comput-
ing platform for spiking neurons (RT-spike). IEEE Trans. Neural Netw. 17,
1050–1063. doi:10.1109/TNN.2006.875980

Schwaber, K., and Beedle, M. (2002). Agile Software Development with Scrum.
London, GB: Pearson.

Terlemez, O., Ulbrich, S., Mandery, C., Do, M., Vahrenkamp, N., and Asfour, T. (2014).
“Master motor map (mmm)framework and toolkit for capturing, representing,

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
https://doi.org/10.1093/ilar.39.1.5
https://doi.org/10.1109/MRA.2010.938836
https://doi.org/10.1016/j.brainres.2004.06.001
https://doi.org/10.1242/jeb.046367
https://doi.org/10.1242/jeb.046367
https://doi.org/10.1016/j.jneumeth.2010.01.005
http://www.bulletphysics.org
https://doi.org/10.1016/S0959-4388(03)00103-X
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1088/
1748-3182/7/2/025008
https://doi.org/10.1088/
1748-3182/7/2/025008
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1007/s10846-016-0412-6
https://doi.org/10.1007/s10846-016-0412-6
https://doi.org/10.1523/JNEUROSCI.5668-11.2012
https://doi.org/10.1523/JNEUROSCI.5668-11.2012
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1142/S0129065716500301
https://doi.org/10.1109/TNN.2006.875980

21

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

and reproducing human motion on humanoid robots,” in Humanoid Robots
(Humanoids), 2014 14th IEEE-RAS International Conference (Washington, DC:
IEEE), 894–901.

Ulbrich, S., Ruiz de Angulo, V., Asfour, T., Torras, C., and Dillmann, R. (2012).
Kinematic bezier maps. IEEE Trans. Syst. Man Cybern. B Cybern. 42, 1215–1230.
doi:10.1109/TSMCB.2012.2188507

Vannucci, L., Ambrosano, A., Cauli, N., Albanese, U., Falotico, E., Ulbrich, S., et al.
(2015). “A visual tracking model implemented on the iCub robot as a use case
for a novel neurorobotic toolkit integrating brain and physics simulation,” in
IEEE-RAS International Conference on Humanoid Robots (Washington, DC:
IEEE Computer Society), 1179–1184.

Voegtlin, T. (2011). Clones: a closed-loop simulation framework for body,
muscles and neurons. BMC Neurosci. 12:1–1. doi:10.1186/1471-2202-12-
S1-P363

Weidel, P., Djurfeldt, M., Duarte, R. C., and Morrison, A. (2016). Closed
loop interactions between spiking neural network and robotic simulators
based on MUSIC and ROS. Front. Neuroinformatics 10:31. doi:10.3389/
fninf.2016.00031

Weidel, P., Duarte, R., Korvasová, K., Jitsev, J., and Morrison, A. (2015). ROS-
MUSIC toolchain for spiking neural network simulations in a robotic environ-
ment. BMC Neurosci. 16:1. doi:10.1186/1471-2202-16-S1-P169

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Falotico, Vannucci, Ambrosano, Albanese, Ulbrich, Vasquez
Tieck, Hinkel, Kaiser, Peric, Denninger, Cauli, Kirtay, Roennau, Klinker, Von Arnim,
Guyot, Peppicelli, Martínez-Cañada, Ros, Maier, Weber, Huber, Plecher, Röhrbein,
Deser, Roitberg, van der Smagt, Dillman, Levi, Laschi, Knoll and Gewaltig. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
https://doi.org/10.1109/TSMCB.2012.2188507
https://doi.org/10.1186/1471-2202-12-
S1-P363
https://doi.org/10.1186/1471-2202-12-
S1-P363
https://doi.org/10.3389/fninf.2016.
00031
https://doi.org/10.3389/fninf.2016.
00031
https://doi.org/10.1186/1471-2202-16-S1-P169
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

22

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

AppenDIX

A. Functional Requirements
As stated in Section 2.1, the itemized functional requirements
should be interpreted as implemented platform features. All the
listed requirements are to be satisfied by the NRP as a whole. For
the sake of clarity, the requirements are grouped by topic.

A.1. Design and Editing
A.1.1. Robot

•	 Assemble a virtual robot
 – shall enable the user to load a ready-made robot from a

graphical library
 – shall enable the user to assemble a robot using ready-made

robot parts from a graphical library
 – shall provide standard sensors and actuators to the ready-

made or block-assembled robot
•	 Define a kinematic chain

 – shall enable the user to define a kinematic chain by building
a tree-like structure of the single links

 – shall enable the user to group kinematic chains
•	 Robot editing

 – shall enable the user to select parts of the robot
 – shall enable the user to edit a robot parts graphical attributes

or physical attribute
•	 Save/load designed robot

 – shall enable the user to save a model of a virtual robot
 – shall provide well-defined file formats (e.g., XML, URDF,

and SDF)

A.1.2. Environment

•	 Assemble and model virtual environment
 – shall enable the user to instantiate any number of objects
 – shall enable the user to remove objects from the

environment
 – shall enable the user to interactively change objects poses

and orientations
 – shall provide a GUI to view the object parameters
 – shall provide a GUI to edit the object parameters
 – shall enable the user to select (e.g., drag and drop) objects

from a local library of available objects
•	 Load/save virtual environment

 – shall provide a custom environment which can be loaded in
a new experiment

 – shall provide a custom environment which can be loaded in
an existing experiment

 – shall enable the user to save the environment status at any
moment during the simulation/editing

 – shall provide the user to store the environment in a well-de-
fined file format

A.1.3. Brain

•	 Create Brain Model
 – shall support binary format for data-driven brain model

representation

•	 Save/load and edit brain models
 – shall enable the user to save brain models
 – shall enable the user to reload brain models
 – shall provide a visual interface to edit brain models

A.1.4. Brain–Body Interface

•	 Transfer Modules
 – shall provide input or output variables that are produced

or consumed by the brain simulation (currents, spikes, and
spike rates)

 – shall provide input or output variables that are produced or
consumed by the sensor or the actuators of the robot

 – shall provide data from both simulators that can be con-
sumed by monitoring or debugging interfaces

 – shall produce suitable output for experiment data gathering,
saving it to a common file format

 – shall handle intensive computations such as the simulation
of a spinal cord or retina model

 – shall hold a state, defined as a set of variables that keeps
some values in between the loops

•	 Transfer modules editing
 – shall enable the user to save and reload transfer modules
 – shall enable the user to edit transfer modules through a

visual interface
 – shall enable the user to select populations of neurons
 – shall enable the user to label populations of neurons
 – shall enable the user to connect groups of neurons to a

transfer module and vice versa
 – shall enable the user to connect sensors and actuators to a

transfer module and vice versa

A.1.5. Experiment

•	 Configuring and loading/saving an experiment setup
 – shall enable the user to select the virtual environment
 – shall enable the user to select the Neurobot to use in the

experiment
 – shall provide user to load/save a definition of an experiment

setup
•	 Defining action sequences

 – shall enable the user to define events (e.g., change of light
intensity and moving of an object) occurring at a certain
point in time

 – shall enable the user to define the properties of an event
(e.g., duration)

 – shall enable the user to specify complex events (by combin-
ing single events)

 – shall enable developers to define more complex actions a
scripting-interface

A.2. Simulation
A.2.1. Simulation Consistency and Synchronization
Mechanisms

•	 Simulation control
 – shall support start, stop and pause of an experiment at any

time

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

23

Falotico et al. The Neurorobotics Platform

Frontiers in Neurorobotics | www.frontiersin.org January 2017 | Volume 11 | Article 2

 – the simulation framework shall be capable of injecting
actions into the simulation of the virtual world as defined
by the experimenter

A.2.2. Interactive Visualization

•	 Simulation control/editing
 – shall enable the user to control the simulation through the

GUI
 – shall enable the user to live edit the experiment configura-

tion using the GUI
•	 Simulation monitoring

 – shall display a 3D rendering of the world scene
 – shall enable the user to navigate the 3D scene
 – shall display measurements from the two simulations
 – shall enable multiple users to view the same running simu-

lation at the same time

 – shall reset every component of the simulation at any time
 – shall be capable of exposing its internal simulation execu-

tion speed
 – shall be presented to the user in a visual interface
 – shall provide an interface to modify any variable parameters

to control the details of the simulation
 – shall be completely reproducible

•	 Physics simulation
 – shall maintain a consistent model of the world and the robot

during the execution of an experiment
 – shall maintain a world clock to update the world state in

suitable time-slices
•	 Synchronization

 – the loop between the brain simulator and the WSE shall
operate at a rate of an order of magnitude of 0.1 ms of
simulated time

 – the world clock shall be synchronized to the brain simulat-
ion clock to achieve a consistent, overarching notion of time

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform
	1. Introduction
	2. Platform Requirements
	2.1. Functional Requirements
	2.2. Non-functional Requirements
	2.3. Integration with Other HBP Platforms

	3. Software Architecture
	3.1. Brain Simulator
	3.2. World Simulator
	3.3. Brain Interface and Body Integrator
	3.4. Closed Loop Engine
	3.4.1. Simulation Control
	3.4.2. State Machines for Simulation Control

	3.5. Backend
	3.6. Experiment Simulation Viewer
	3.6.1. User Interface
	3.6.2. Architecture
	3.6.3. Editors
	3.6.3.1. Environment Editor
	3.6.3.2. Brain Editor
	3.6.3.3. Transfer Functions Editor
	3.6.3.4. Experiment Workflow Editor

	3.7. Robot Designer

	4. Software Development Methodology
	5. Use Cases for the Neurorobotics Platform
	5.1. Basic Proof of Concept: Braitenberg Vehicle
	5.2. Classic Robot Controller: Sensorimotor Learning
	5.3. Integration of Bioinspired Models: Retinal Vision

	6. Future Developments
	7. Conclusion
	Author Contributions
	Acknowledgments
	References
	Appendix
	A. Functional Requirements
	A.1. Design and Editing
	A.1.1. Robot
	A.1.2. Environment
	A.1.3. Brain
	A.1.4. Brain–Body Interface
	A.1.5. Experiment

	A.2. Simulation
	A.2.1. Simulation Consistency and Synchronization Mechanisms
	A.2.2. Interactive Visualization

