
Adaptive visual pursuit involving eye-head coordination and prediction
of the target motion

Lorenzo Vannucci1, Nino Cauli1, Egidio Falotico1, Alexandre Bernardino2, Cecilia Laschi1

Abstract— Nowadays, increasingly complex robots are being
designed. As the complexity of robots increases, traditional
methods for robotic control fail, as the problem of finding the
appropriate kinematic functions can easily become intractable.
For this reason the use of neuro-controllers, controllers based
on machine learning methods, has risen at a rapid pace. This
kind of controllers are especially useful in the field of humanoid
robotics, where it is common for the robot to perform hard tasks
in a complex environment. A basic task for a humanoid robot
is to visually pursue a target using eye-head coordination. In
this work we present an adaptive model based on a neuro-
controller for visual pursuit. This model allows the robot to
follow a moving target with no delay (zero phase lag) using a
predictor of the target motion. The results show that the new
controller can reach a target posed at a starting distance of
1.2 meters in less than 100 control steps (1 second) and it can
follow a moving target at low to medium frequencies (0.3 to
0.5 Hz) with zero-lag and small position error (less then 4 cm
along the main motion axis). The controller also has adaptive
capabilities, being able to reach and follow a target even when
some joints of the robot are clamped.

I. INTRODUCTION

Following a moving target with a foveal vision is one of
the essential tasks of humans and humanoid robots. Humans,
in order to perform this task, use a combination of eye and
head movements in conjunction with prediction [1] of the
target dynamics in order to align eye and target motion.

The reasons for the occurrence of head motions are a wider
visual information, obtained by moving the neck in compar-
ison to visual information obtained by eye movements, and
the costant relative positions of the object and the eye in case
of the neck motion. During the head-unrestrained tracking of
a periodical target, Lanman and colleagues [2] reported that
head movements accounted for approximately 75% of the
gaze displacements while the eye-in-head remained relatively
stationary at the center of the orbit.

These results confirm the central role of the head in pursuit
task. From a robotic point of view, several implementations
inspecting the effects of the gaze movements on 3D recon-
struction ([3], [4]) or replicating the visual pursuit exist. The
investigation of the oculomotor behavior from the compu-
tational neuroscience standpoint was oftentimes performed
making use of simple pan/tilt cameras [5]. Although these
systems may consistently represent some specific features of
the eye movements, they seem to be somehow inadequate
for their inability to incorporate the coordinated motion of
the head.
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Different considerations may be applied to the eye-head
robot WE-3 [6] and its successors [7]. The WE-3 robotic
head is anthropomorphic (in terms of geometry, mass and
kinematic variables), therefore it offers the major advantage
of performing coordinated head-eye motion and pursuit
motion in the depth direction but without including predic-
tion. Shibata and colleagues suggested a control circuits to
realize three of the most basic oculomotor behaviors [8]:
the vestibulo-ocular reflex and optokinetic response (VOR
and OKR) for gaze stabilization, smooth pursuit for tracking
moving objects, and saccades for overt visual attention. This
model, based on the prediction of target dynamics, is capable
to execute fast gaze shift, but it did not consider the head
motion as part of the oculomotor control in the pursuit task.
The same consideration can be applied to the model of
smooth pursuit and catch-up saccade [9] implemented on
the iCub robot.

Rajruangrabin and Popa [10] proposed a model which tries
to replicate a realistic motion coordination for a humanoid’s
robot neck and eyes while tracking an object (with no
prediction of the target motion). This model also takes
into consideration that under certain conditions the robot
kinematics model might be difficult to obtain. As a result of
this they proposed a novel reinforcement learning approach
for a model-free implementation. This aspect is really basic
if we consider the field of humanoid robotics, where the
robot has multiple end effectors (head, hands, etc...) and/or
non-rigid links. For these reasons, in the last years the usage
of neuro-controllers, controllers based on machine learning
methods, has risen at a rapid pace. These models are inspired
by human biology and they try to replicate the control found
in nature by mimicking the function of some parts of the
nervous system. The advantages of using neuro-controllers
over classic control methods is that they can easily adapt to
any kind of robot, without prior knowledge of the parameters
of the kinematic chain linking to the end effector, even if the
chain is made up of non-rigid links.

In this work we present a model based on a neuro-
controller which was first introduced by Asuni and col-
leagues [11]. They proposed an approach based on the motor
babbling technique in conjunction with a growing neural
gas to achieve the goal of making a robotic head fixing
a static target. Despite having some remarkable properties,
their model had some limitations mainly in terms of perfor-
mances (it takes around 250 control steps to reach a static
target). We propose an adaptive controller, based on [11]
able to accomplish a visual pursuit task involving eye-head
coordination and prediction of a moving target.
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Fig. 1. General model of the adaptive controller for visual pursuit tasks

II. MODEL

In this section we describe the general model of the
controller, as depicted in Fig. 1. The control loop starts with
a 3D tracker able to calculate the 3D position of the target o
in the world reference frame. After that, an Extended Kalman
Filter predicts the position o of j steps ahead. The prediction
is used as reference of the Pursuit Controller that calculates
the position q of the head and eyes joints needed to center the
target in the camera image. The difference of joints positions
q and encoders Enc is then transformed by a PD controller
in joint velocities q̇ used as motor commands for the robotic
head.

A. EKF Predictor

In order to predict target dynamics an Extended Kalman
Filter was used. Because we are dealing with measurements
that are noisy and there is time variability in the parameters
of our target, our internal models should have the following
properties: fast convergence, long term learning and noise
robustness. Another important property needed to implement
the control system is the capacity to predict the entire
time varying trajectory of the target, and not only the final
position. A model that iterates a single step learning through
time is a smart solution. Moreover, an approximation of the
target dynamics is known in advance. The Kalman Filter
(KF) fits perfectly with these requirements and has been
used successfully in many applications. For these reasons the
target internal model was implemented using an Extended
Kalman Filter.

In order to predict the target position the filter first updates
its state x and then iterates its prediction step j times.

B. Pursuit Controller

The goal of the pursuit controller is to move the current
gaze fixation point (gfp) of the robot towards the target
point. This controller is an improved version of [11]. The
core part of this controller is the Sensory-Motor Map, which

is a network able to respond to a stimulus by activating
some specific units. This is similar to the functioning of
the somatosensory cortex in the human brain: a stimulus
reaches the cortex and the section dedicated to respond to
that stimulus activates. In this case, the stimulus, or input, is
a proprioceptive anticipated feedback (the motor command
generated at the previous control step) combined with the
current displacement in space of the gaze fixation point
with respect to the desired target, calculated as a normalized
difference vector:

p =

(
o(t+ j)− gfp(t)
||o(t+ j)− gfp(t)||2

, q(t)

)
(1)

This map is represented by a neural model capable of
learning how to distinguish between different inputs, the
Growing Neural Gas[12] (GNG). The Neural Gas model[13]
(NG) is similar to a Kohonen’s map[14], but has the benefit
of not having a fixed topology. The main difference between
the GNG and the NG is that in the first model the network of
units grows dynamically during the training phase, instead
of being of a fixed size decided beforehand. The output of
such network is the activated unit, or winning unit:

gng(p) = arg min
s∈A

||p− ws||2 (2)

where A is the set of units and ws is the weight vector of
the s-th unit. For each unit s, its topological neighbourhood
is defined as

Ns = {u ∈ A|(s, u) ∈ E} (3)

where E is a dynamically built subset of A×A.
After a stimulus is given to the Sensory-Motor Map,

this will then respond by generating the motor commands
that will move the gaze fixation point towards the desired
position. This is done by passing the activation signal through
a series of units specifically trained by a motor babbling
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algorithm to generate these motor commands. The r units
represent the agonist and antagonist activations for each
motor. Thus, the number of these units is double the number
of the actual actuators so that the couple r2i, r2i+1 are the
agonist and antagonist units for the i-th motor, also called
rEi , r

I
i , which stand for the excitatory and inhibitory stimuli

for the i-th actuator. Their activation is computed as:

ri = xi + zwi +

∑
k∈Nw

νzki

|Nw|
(4)

where w is the index of the winning unit, zki is a weight
coming from the k-th unit of the GNG, ν is a proper
constant and xi is a random activation coming from x units
population, only present during the training phase. The a
units are responsible for the generation of the actual motor
commands that have to be sent to the actuators, starting
from the excitatory and inhibitory stimuli coming from the
r population. At each control step the new output values
are computed in terms of a difference between current and
previous step values:

dai
dt

= ε(||o(t+j)−gfp(t)||2)·(rEi −rIi )·g(rEi , r
I
i , ai(t−1))

(5)
where ε(d) is a function of the distance between the target

and the current gaze fixation point defined as

ε(d) =

{
v · d during the execution phase
ε during the training phase (6)

with an appropriate speed parameters v and ε, and

g(rE , rI , ψ) =

{
ψmax − ψ if (rE − rI) ≥ 0
ψ if (rE − rI) < 0

(7)

where ψmax is the maximum angle of the joint.
The training for this controller is performed in two phases,

both unsupervised:
• in the first phase only the sensory-motor map is trained;
• in the second phase the motor babbling learning is

performed, the newly trained map is used in the global
architecture to train the z connections.

The z connections are trained by using Grossberg’s Outstar
Law[15]:

dzki
dt

= γ · ck · (−δzki + ri) (8)

where γ is the learning rate and δ is a decay parameter. At
a given step, only the connections going out from the winner
units and its neighbours are updated, otherwise the update
would not be related to the recently performed movement.
This is done by defining:

ck =

{
1 if k is the winner unit w or k ∈ Nw

0 else (9)

Fig. 2. Task setup. The robotic head pursues with its gfp the moving
target keeping it on the center of camera images

The model presented in this section differs from the one pro-
posed in [11] for the normalization of the difference vector
given as a input to the GNG, the anticipated proprioceptive
feedback and the introduction of the ε function, replacing a
constant. All these improvements were done to speed-up the
controller.

III. IMPLEMENTATION

In order to test the model, we decided to perform a pursuit
task of a moving target with pendulum motion. A robotic
head was fixed on a table and a ball was hanged to a wire in
front of it (see Fig. 2). During the experiments the robotic
head had to pursue with its gaze fixation point the oscillating
pendulum. The goal was to keep the moving target centred
on the camera images. The pursuit was performed moving
all head motors (neck and eyes).

A. SABIAN head

For our experiments the SABIAN head, which is an iCub
head [16] (Fig. 2), was used. This robotic head contains
a total of 6 DOFs: 3 for the neck (pan, tilt and swing)
and 3 for the eyes (an independent pan for each eye and
a common tilt). The visual stereo system consists of 2
dragonfly2 cameras with a maximal resolution of 640X480
pixels. All the joints are actuated by DC servo motors with
relative encoders. The processing unit consists of a PC104
with a live Debian distro running on it.

B. Extended Kalman Filter

The EKF is an extension of the Kalman Filter that deals
with non-linear dynamics. It is used to estimate the state
of a system, in our case the parameters of the pendulum
trajectory. The filter keeps an internal state representing the
tracked object and its covariance matrix (that represents the
reliability of the state). In order to update the internal state
the filter uses an a priori model of the object trajectory (in
our case a in-plane pendular motion) and an observation
model describing the relationship between the measurements
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and the state (in our case the 3D position of the target
extracted from the cameras). For more details about the
Kalman filtering see [17].

a) Filter implementation: The model of a 2D pendulum
was chosen to describe the target dynamics. The target move-
ment is approximated as an oscillation of a 2D pendulum
on a plane A rotated of an angle α around the Y vertical
axis. Defined Θ, Θ̇ and Θ̈ as angular position, velocity and
acceleration, g as gravity, L as wire length, d as damping
factor and m as ball mass, the 2D pendulum equation is:

Θ̈ +
d

m
Θ̇ +

g

L
sin(Θ) = 0 (10)

Because the observations are expressed in 3D Cartesian
coordinates, a non linear observation model is needed. If
C is the position of the pendulum pivot in the 3D Cartesian
space, then the 3D Cartesian position of the target T is:

T (Θ, L, C, α) =

Cx + L sin(Θ) cos(α)

Cy − L cos(Θ)

Cz − L sin(Θ) sin(α)

 (11)

For these reasons the internal state of the filter needs to store
all the 2D pendulum parameters plus the 3D pivot position
and the rotation angle of the plane. This results in a eight
element state vector:

x =
[
Θ Θ̇ d

m
g
L Cx Cy Cz α

]
=
[
x1 x2 x3 x4 x5 x6 x7 x8

] (12)

Using equations 10, 11 and 12 the transition and observa-
tion models become respectively:

f(x) = x+ ∆tẋ = x+ ∆t



x2

−x3x2 − x4 sin(x1)

0

...
0


(13)

h(x) =

x5 + g
x4

sin(x1) cos(x8)

x6 − g
x4

cos(x1)

x7 − g
x4

sin(x1) sin(x8)

 (14)

The EKF is not only used to track the target but also
to predict its future trajectory. The predicted trajectory is
obtained iterating the filter prediction step until needed.
First the filter state is saved, then the predicted trajectory
is calculated (iterating the prediction step of the filter) and
eventually the saved filter state is restored.

C. Pursuit Controller

For the training of the pursuit controller, we started by
training the sensory motor-map, namely the growing neural
gas. To do this we created a training set of 100000 input
patterns which was given in input ten times to the GNG.
After the training ended, the resulting network had 3695
units.

The selection of the hyperparameters for the controller
(γ, δ, ε, ν) is critical and greatly impacts the performance.

To appropriately choose such parameters we implemented a
model selection procedure during which we measured the
performance of the resulting model by computing its mean
speed of reaching on a training set D of 20 target points:

v =
1

|D|
∑
i∈D

si
ti

(15)

where si the starting distance of the target and ti the
number of control step used to reach it. The model selection
was performed on these values for the hyperparameters:
• γ ∈ {0.005, 0.01, 0.015, 0.02};
• δ ∈ {0.0005, 0.001, 0.0015, 0.002};
• ε ∈ {0.1, 0.3, 0.05};
• ν ∈ {0.1, 0.3, 0.5}.
The best results on the validation set were obtained by

a model with a mean speed of 0.055 meters/step and the
following values for the hyperparameters:

γ = 0.005 δ = 0.002 ε = 0.1 ν = 0.1

All the training phase was done in a simulated envi-
ronment, using the iCub Simulator, a software developed
alongside the iCub control libraries.

IV. RESULTS

A. Step response

Fig. 3. Distance between the current gaze fixation point and the target
during the step response task, with the contribution of the head and the eye
joints.

Fig. 4. Joints trajectories during a step response task.

In this experiments, the controller had to reach a static
target from a starting position in which all the joints were set
to 0 except for the vergence that was set to 5. Fig. 3 shows
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Fig. 5. Distance between the current gaze fixation point and the target
during the task with clamped joints.

the behaviour of the distance from the target during such
task. Given that the control loop runs at 100Hz frequency, it
can be observed that the system takes one seconds to reach
a target from a starting distance of more than half metre.

Fig. 3 also shows the contribution to the reduction of the
error from the head and eye joints. It can be observed that
the sum of both contributes does not nullify the error, thus it
is the coordination between head and eye movements that
allows the proper reaching.This can also be seen in Fig.
4, where the trajectories of the joints during the task are
reported.

In order to properly evaluate the performance we repeated
this test 15 times with starting distances ranging from 40cm
to 1.2m and we observed that the mean number of steps
needed to reach a target with an error under 4cm was 95.73
with a standard deviation of 11.98.

In order to test the adaptivity of the controller we repeated
the same 15 tests with some joints of the robot clamped. In
particular, we decided to clamp all the head joints. The same
model was used, without going through a new learning phase.
The result for the same test showed in Fig. 3 is displayed
in Fig. 5. In this case, the step response is less smooth and
more control steps are necessary in order to reach the target.

The mean execution time steps for the reaching task with
clamped joints is 103.73 with a standard deviation of 31.50.

B. Visual pursuit

In this experiments, the robot had to follow a target
attached to a pendulum. The performance of the model were
tested at various frequencies of the pendulum oscillation,
with a starting amplitude of 50cm. All the experiments
started after 1 second. This time is necessary to allow the
filter to reach convergence. In order to select the proper
value for the prediction step j, we estimated the delay of the
system as the sum of the visual delay (30ms) and the motor
delay (200ms). Thus, we chose j = 8, which accounts for
a delay of 240ms, given that the predictions are given for
30ms intervals.

The results are shown in Table I, where Ex is the mean
error alongside the principal motion axis, E is the mean
distance from the target in metres, Eu is the mean error on
the camera images in pixels alongside the horizontal axis and
u̇ is the mean horizontal speed of the target on the camera
in pixels/step.

TABLE I
RESULTS FOR VISUAL PURSUIT.

Freq (Hz) Ex E Eu u̇
0.3 0.031 0.091 10.618 0.282
0.4 0.033 0.088 11.687 0.421
0.5 0.032 0.101 12.515 0.485
0.6 0.055 0.143 17.737 0.657

It can be observed that the model is able to pursue a target
up to a frequency of 0.5Hz, as the mean error on the x axis,
the one on which most of the motion occurred, at 0.6Hz is
larger than the radius of the target (4cm). Fig. 6 and 7 show
the pursuit of the target, for oscillation frequencies of 0.4
and 0.6, by comparing the target and current gaze horizontal
positions in time. It can be observed that, after an initial
alignment phase, the robot is able to follow the target at
0.4Hz, while at 0.6Hz the performance deteriorates.

Fig. 6. Target and gaze alongside the x axis during an oscillation frequency
of 0.4Hz.

Fig. 7. Target and gaze alongside the x axis during an oscillation frequency
of 0.6Hz.

In order to test the adaptivity of the controller we repeated
the same experiments with all the head joints clamped.
The results for the visual pursuit task are shown in Table
II, while Fig. 8 shows the pursuit of the target for an
oscillation frequency of 0.4Hz on the horizontal axis. The
robot showed capable of following the target but with a
considerable undershooting, even at a frequency of 0.4Hz.
Thus, we did not investigate higher frequencies. In Fig. 9 is
shown the robot and its left camera images during the pursuit
experiment at 0.4 Hz oscillations.
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Fig. 8. Target and gaze alongside the x axis during an oscillation frequency
of 0.4Hz with clamped joints.

TABLE II
RESULTS FOR VISUAL PURSUIT WITH CLAMPED JOINTS.

Freq (Hz) Ex E Eu u̇
0.3 0.052 0.152 15.113 0.421
0.4 0.054 0.349 28.144 0.685

V. CONCLUSIONS

In this work we proposed an adaptive model for robotic
control able to perform visual pursuit with prediction of the
target motion. In order to design this controller, we started
from a neuro-controller for reaching found in literature that
incorporates an unsupervised machine learning model, a
growing neural gas, paired with a motor babbling training
algorithm. This model was capable of reaching static targets
posed at a starting distance of 1.2 meters in roughly 250
control steps. We modified this controller by simplifying
the inputs space of the growing neural gas, adding a speed
gain based on the target distance and closing the control
loop on the motor commands instead of the encoders. This
improvements made it work in real-time: the obtained results
showed that the new controller could reach a target posed at a
starting distance of 1.2 meters in less than 100 control steps
(1 second) and it could follow a moving target at low to
medium frequencies (0.3 to 0.5Hz) with zero-lag and small
position error (less then 4 cm along the main axis of motion).
The controller also had adaptive capabilities, being able to
reach and follow a target even when some joints of the robot
were clamped. In addition, the adaptive property of such a
model guarantees the applicability of this approach also to

Fig. 9. Four snapshots acquired during the pursuit experiment with 0.4
Hz frequency. In big images it is shown the SABIAN head looking at the
target, in small windows it is shown the left eye camera image.

complex robotic platforms. This could fit well in the last
trends of humanoid robotics, where complex robots with
muscles-like structure are starting to emerge.
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