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Abstract
Nowadays, autonomous service robots are becoming an important topic in robotic research. Differently from typical
industrial scenarios, with highly controlled environments, service robots must show an additional robustness to task
perturbations and changes in the characteristics of their sensory feedback. In this paper, a robot is taught to perform
two different cleaning tasks over a table, using a learning from demonstration paradigm. However, differently from other
approaches, a convolutional neural network is used to generalize the demonstrations to different, not yet seen dirt or stain
patterns on the same table using only visual feedback, and to perform cleaning movements accordingly. Robustness to robot
posture and illumination changes is achieved using data augmentation techniques and camera images transformation. This
robustness allows the transfer of knowledge regarding execution of cleaning tasks between heterogeneous robots operating
in different environmental settings. To demonstrate the viability of the proposed approach, a network trained in Lisbon to
perform cleaning tasks, using the iCub robot, is successfully employed by the DoRo robot in Peccioli, Italy.

Keywords Learning from demonstration · Transfer learning · Data augmentation · Convolutional neural networks ·
Task parametrized Gaussian mixture models

1 Introduction

Times where robots were relegated to controlled factory
environments, with absolutely no interaction with humans,
are becoming part of our past. Nowadays, robots share
their working environment with us, needing the ability to
handle unexpected situations, to interact with humans, and
to not interfering with co-workers actions (both humans
and robotic). A perfect example of robotic platforms
facing these problems are the service robots. In recent
years, elderly population increased exponentially around the
globe, forcing the research community to find solutions to
smoothly integrate senior citizens in the modern society.

Parts of this manuscript were previously presented at the IEEE
International Conference on Autonomous Robot Systems and
Competitions (ICARSC 2018), Torres Vedras
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During assistance, caregivers are overloaded with tasks,
most of them physical and repetitive. For this reason,
caregivers spend a substantial amount of their time in
house chores and physical assistance, overlooking social
interaction with the assisted elders. Service robots able
to perform house chores would relieve caregivers from a
significant burden, giving them more time to spend with
the elders. Cakmak et al. [2] observed that cleaning tasks
are 49.8% of all chores that humans perform at home.
Many mobile cleaning robots were already successfully
presented in the market, but they are able to perform only
highly specialized and simplified tasks, like cleaning the
floor inside an apartment with a predefined behaviour.
Unfortunately, typical cleaning actions, such as wiping,
washing, sweeping and scrubbing, require a robot with fine
manipulation abilities to be performed [23]. As a result,
several researchers focus their attention on service robots
equipped with manipulators to perform cleaning tasks [1,
7–11, 14–16, 18, 19, 21, 22, 24–27, 31–33, 35, 37–42].

The most direct approach to design a service robot able
to perform basic cleaning actions is using classical control.
Okada et al. [32] generate a sequence of body posture
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to perform a sweeping motion using whole body inverse
kinematics. To increase stability and avoid self collisions,
Yamazaki et al. [42] use the SR-inverse method to control
robot’s upper body during a cleaning task. Liang et al. [25]
generate a sweeping motion with both arms using full dual
position control based on task-space kinematics. Hess et
al. proposed a novel coverage path planning for robotic
manipulators that can clean arbitrary 3D surfaces [15]. The
authors suggest a generalization of the traveling salesman
problem (GTSP), which transforms the surface into a graph
defining a set of clusters over nodes and minimizing some
cost measures. Dornhege et al. discussed how to combine
classical symbolic planning with geometric reasoning in
their TFD/M (Temporal Fast Downward/Modules) planner
for wiping tasks using the PR2 robot [9, 31]. Ortenz et
al. suggested projected operational space dynamics that
minimize joint torque and increase stability while the
robot is in contact with a whiteboard during a wiping
movement [33]. Urbanek et al. used Cartesian impedance
control to create a compliant behavior of the robotic
end-effector while wiping a table [41]. The Cartesian
impedance control is extended with a compliant whole-
body impedance control framework to interact with the
environment using Rollin’ Justin in Leidner et al. [21]. The
same group implemented an hybrid reasoning mechanism
adding task parameterization to their whole-body control
and integrating symbolic transitions to concrete cleaning
actions performed using a sponge [22, 24]. Classical control
approaches are the perfect solution in case the cleaning
environment is controlled, well known a priori and does
not change in time. However, if the robot faces unknown
environments, it needs to adapt to unseen situations and to
learn new skills. Classical controllers able to generalize to
such unexpected situations are difficult to design.

In order to adapt to unknown environment and acquire
new skills, cleaning robots should be able to learn from
past and new experience. Using Reinforcement Learning
(RL) robots can autonomously learn an approximation of
optimal action policies for cleaning through self exploration
of their action space. Hess et al. define an efficient
state transition model for wiping table using a Markov
Decision Process (MDP) [14]. The transition function is
modeled by observing the outcomes of robot’s actions and
then used to generate paths for cleaning table surfaces.
MDP is also used to clear objects from a table in fully-
observable problems with uncertainty [27]. The same
authors employ REX-D algorithm that integrates active
teacher demonstration for increasing learning speed in
order to sweep lentils from a plane [28]. Interactive RL
approach with contextual affordances is developed by Cruz
et al. to clean a table using state-action-reward-state-action
(SARSA) [7]. In some cases the cleaning robot needs to
handle high dimensional sensory data, like raw pixels data

from camera images. In such situations deep reinforcement
learning (Deep RL) models can simultaneously learn a
desired behaviour from self exploration and extract the
relevant features from raw data. Devin et al. [8] developed
a Deep RL object-level attentional mechanism used to
control a robot in different tasks like pouring almonds in a
cup or sweeping citrus from a table. Moreover, Liu et al.
proposed an imitation-from-observation algorithm used to
perform various pushing and swiping actions. The model
was trained both in simulation and on a real robot showing
video recordings of the action from different viewpoints
[26]. RL is a powerful tool that permits to find original
solution to various control problems. Anyhow its flexibility
comes with some drawbacks: long training time; exploration
of dangerous states and configurations (e.g.,hitting a
wall during navigation or colliding with the environment
during manipulation). Training in simulation can relax
these problems, but performing a domain translation from
simulation to the real world can be really complex.

To speed up the learning process and avoid danger-
ous situations, humans tend to exploit past experiences
from other people (which performed similar actions) and to
imitate their movements. In Learning from Demonstration
(LfD) algorithms robot skills are derived from observa-
tions of human demonstrations and generalized to new
environments. Dynamic Movement Primitives (DMPs) and
Gaussian Mixture Models (GMM) are typically used to for-
malize and encode unit of action as a stable dynamical
system with LfD.

Regarding the literature on DMPs, Ghalamzan et al.
proposed an approach where DMP model and Inverse
Optimal Control (IOC) are incorporated with a reward
function to generate the necessary path in a new situation
[35]. Kormushe et al. used DMPs and upper body
kinesthetic demonstrations to teach to a robot how to
clean a whiteboard [19]. In addition, a periodic DMP is
applied to online coaching of robots in a human-robot
interaction system [11]. Christopher et al. [6] show how
weights of a periodic DMP can be learned using incremental
locally weighted regression (ILWR). The periodic DMP
is also used with force feedback for wiping differently
tilted surfaces [10, 11]. Moreover, in Pervez et al. [37]
task parameterized DMP (TP-DMP) is used for adaptive
motion encoding to perform a sweeping task based on few
demonstrations.

On the GMM side, Calinon et al. [3] proposed the
Task-Parameterized Gaussian mixture model (TP-GMM), a
technique to generalize trajectories from demonstrated ones
using task parameters (frames). Silvério et al. [40] combined
TP-GMM and quaternion-based dynamical systems to learn
full end-effector poses of a bimanual robotic manipulator to
perform a sweeping task. A similar approach using partially
observable task parameters without a dynamical system is
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proposed by Alizadeh et al. [1]. In their work, Hoyos et
al. [16] extend TP-GMM with incremental learning skill.
While several TP-GMM systems have been successfully
used to generate robotic cleaning motions, none of them is
able to autonomously learn the task parameters from raw
sensory data (i.e. camera images).

One powerful solution to extract information from raw
pixel data and learn important features on the images are
Convolutional neural networks (CNNs). Rahmatizadeh et al.
proposed a system able to learn multiple tasks using CNN
and Long short-term memory (LSTM) networks [39]. The
CNN plays the role of task selector and LSTM generates
the robot joint command to send to the robot for cleaning
small objects using a towel. Pervez et al. [38] proposed to
use a CNN to learn the parameters of a TP-DMP directly
from camera images, calling the system Deep-DMP (D-
DMP). D-DMP was used to swipe different objects from
a table. In a recent work of our [18], we used a similar
approach to learn the parameters of a TP-GMM to control
a robot performing sweeping and wiping movements while
cleaning a table. Two CNN based on AlexNet [20] are used
to learn the parameters from raw input images, collecting
the data through kinesthetic teaching. The main contribution
compared to [38] is the ability of the system to generate
different kinds of cleaning trajectories for different kinds

Fig. 1 Picture of the Lisbon iCub robot (top) and the Peccioli DoRo
robot (bottom) in their experimental setup. Our system was trained on
the iCub and then tested on the DoRo

of dirt: sweeping cluster of lentils and wiping off marker
scribbles. A common limitation of both [38] and [18] is the
need to retrain the system for different camera positions,
environment to clean and robot to use. To solve these issues,
in our last published work [4] we project the robot camera
images into a canonical bird-view camera plane and we
augment the dataset changing the illumination, shifting the
images and applying Perlin noise [36] to the background.
One CNN is used to directly predict means and covariances
of a GMM, using GMR to obtain an estimation of the
desired cleaning trajectory. After being trained with right
arm’s kinesthetic demonstrations, the robot was able to
transfer his knowledge sweeping and wiping different kind
of dirt using the left arm.

In this paper, we extend the works presented in [18] and
[4] using a CNN/TP-GMM system, trained on a dataset
collected on the iCub robot in Lisbon-Portugal, to control
the Domestic Robot (DoRo) in Peccioli-Italy while cleaning
a table (Fig. 1). This type of transfer learning of a given task
across different domains is known as transductive transfer
learning [34] and also referred to as multi-robot transfer
learning in the robotics community [13].

1.1 Contributions

To successfully transfer the knowledge gathered while
training the iCub robot to the controlling task on the
DoRo robot it is essential to collect a set of features
that are invariant across domains, which is done using
the techniques described in this paper, e.g., viewpoint
invariance using a virtual camera approach and dataset
augmentation using Perlin noise, image translation and
change in illumination. In addition, we perform a systematic
analysis of the number of kinesthetic demonstration needed
to successfully swipe and wipe off a table from lentils and
marker scribbles, studying which type of data augmentation
is more appropriate for our task. As a result of this analysis
we significantly reduced the high amount of kinesthetic
demonstrations used in both [18] and [4].

In this paper, we adopted the same transformation to
a canonical virtual camera used in [4]. We also used
the kinesthetic demonstrations collected in [4] to create
the new augmented dataset. Differently from [18] and
[4], we calculated the hand orientations analytically. The
orientations extracted from the kinesthetic demonstrations
performed on the iCub are optimal for that particular robot
and do not generalize well on the DoRo.

The main focus of this paper is to transfer the knowledge
acquired by the iCub to the DoRo robot. For this reason,
both the networks presented in [18] and [4] could have been
used. The solution proposed in the former is more structured
compared with the end-to-end solution of the later. Indeed,
the combination of a CNN and a TP-GMM produces robust
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results and makes the network of [18] more suitable for this
work.

The main contributions of this paper are:

1. Demonstration of successful transferring of knowl-
edge from a robot to another: CNN and TP-GMM
trained on the iCub are used to control the DoRo robot.
To achieve this, three key generalization mechanisms
are used:

(a) Geometric image transformation (bird-eye view)
to cope with different robot camera geometry
(pose and calibration parameters). This was already
proposed in [4].

(b) Data augmentation to cope with different robot
camera photometric properties (brightness, con-
trast, noise, color balance) and background clutter.
This was already proposed in [4] but extended in
this paper with a dual Perlin noise strategy.

(c) End-efector orientation computed analytically to
better adapt to different robot kinematics. This is a
new method proposed in the current paper.

2. Finding an optimal number of demonstrations
needed to learn a cleaning motion: CNN are trained
with different number of kinesthetic demonstrations in
order to detect a good compromise between size of the
dataset and performance of the network.

3. Proving the importance of domain randomization in
our scenario: Augmenting the dataset adding random
Perlin noise to the background of the images is
fundamental to generalize from iCub to DoRo.

1.2 Outline

The paper is organized as follows. Section 2 summarizes the
proposed approach, describing the canonical virtual camera
projection, showing the CNN architecture and giving a brief
introduction to TP-GMM. Section 3 shows the experimental
setup, while in Section 4 the experimental results achieved
are presented. Section 5 concludes the paper and gives some
directions for further research.

2 Proposed Approach

The goal of this paper is to transfer the knowledge
acquired by the iCub robot in Lisbon, during a kinesthetic
demonstration of a cleaning task, to the DoRo robot in
Peccioli. Two different cleaning movements are taught to
the iCub in order to clean a table: a sweeping motion
to remove lentils from the table and a wiping motion
to clean marker scribbles. The robot holds a sponge in
its hand to perform the cleaning trajectories. In order to

generalize to different robot camera positions and table
heights, camera images are transformed to a canonical
virtual image plane, similarly to what has been done in [4].
The canonical virtual camera is placed at a fix distance from
the table, right on top of it, generating a bird-view image.
Specific sizes and positions of objects placed on the table
correspond to particular sizes and positions in the virtual
image plane. From the virtual images, the robot estimates
the correct cleaning hand trajectories using the same
architecture introduced in our ICARSC 2018 paper [18]: a
CNN estimate the initial, intermediate and final positions of
the desired trajectory (T(n), n = 0, . . . , 200) used to create
the parameters of the TP-GMM (reference frames Xj =
{Aj , bj }, 1 ≤ j ≤ 3); GMR algorithm is used to estimate
the desired trajectory T(n) from a TP-GMM defined by
the reference frames Xj . The only difference from [18]
is the absence of the CNN to calculate the orientations
of the initial, intermediate and final reference frames.
High variation in the orientations of human demonstrations
make impossible for the CNN to precisely predict the
initial, intermediate and final orientations. To overcome this
problem, in this paper we decided to analytically calculate
the reference frames orientations from the reference frame
positions predicted by a single CNN. Figure 2 shows the
complete system architecture.

2.1 Virtual Camera

The naive approach to use directly the unprocessed images
taken from the robot cameras as input of the CNN
has one important drawback. In real scenarios a robot
approaches the table to clean it from different positions
and with different head configurations. The pose of the
camera plane relative to the table plane during cleaning
changes dynamically. This means that the CNN should
intrinsically learn this spatial correlation directly from
images. The task is not easy, and several demonstrations
with different camera angles covering most of the possible
configurations should be recorded. In our case this implies
tens of thousands kinesthetic demonstration, something
impossible to generate. One solution can be to fix a specific
camera/table pose during training and place the robot
always in the same configuration and position relative to the
table during test. This is not a realistic scenario and, even if
reasonable as proof of concept, such a system is not usable
in real life.

In this paper we decided to use the approach adopted in
[4]: applying a homographic transformation H to the robot
camera plane in order to project it to a canonical virtual
camera plane facing downward and placed right above the
table at a fixed position.

This post-processing guarantees input images to be
always taken from the viewpoint of the same canonical
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Fig. 2 System Architecture. Images from the robot’s camera are transformed to virtual bird-view images. The virtual images are passed to a CNN
that predicts initial, intermediate and final positions (b1, b2 and b3). From the resulting TP-GMM the expected hand’s trajectory is computed using
GMR algorithm

virtual camera, releasing the CNN to learn the geometric
transformation between image plane and table plane. In
order to generate the virtual camera image, the robot
calculates an homographic transformation H from the robot
camera plane to the virtual camera plane each time a new
image is received:
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where Pr = (xr , yr ) and Pv = (xv, yv) are pixel
coordinates in the real camera frame and virtual camera
frame respectively and z is an arbitrary, non-zero scale
factor.

Homography matrix H is calculated using the projection
on both robot camera plane and virtual camera plane of
4 point laying on the table P(i) = (x(i), y(i), ht ), i =
1, . . . , 4, where ht is the table height in the robot reference
frame. To obtain the 4 points P(i) the robot places his hand
in 4 distinct positions on the table and uses his kinematics
to extract the point planar coordinates (x(i), y(i)) and the
high of the table ht . The projection of P(i) on the robot
camera plane Pr (i) is obtained using the body-eye forward
kinematics and the intrinsic parameters of the camera:
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where τ
eye
O (q) denotes the Denavit-Hartenberg matrix from

the robot reference frame O to the camera reference frame,
I is a 3x3 identity matrix and 0 is a 3x1 vector of 0s.

To calculate the projections on the virtual camera plane
Pv(i) we use the following function relating the robot
reference frame O and the virtual camera image frame:

Pv(i) = ((y(i) + 2/3)h, (x(i) + 1)h) (3)

where h is a scaling factor from pixel to meters that
correspond to the height of the virtual camera image
expressed in pixels. All points in 3D space are expressed
on the iCub reference frame O placed near the hips of the
robot. Ideally, the calibration process (i.e.,the robot touching
4 different positions on the table and extracting the points
P(i)) must be repeated every time the robot approaches a
new table.

The procedure described above was used to generate the
images of our dataset. In the case of DoRo, the head stays
still during the entire cleaning experiment. For this reason
we decided to skip Eq. 2 and select directly, from the camera
image, the pixels corresponding to the points touched by the
robot during calibration.

2.2 Data Augmentation

A second step necessary to achieve the transfer of cleaning
capabilities from the iCub to the DoRo, was to perform
a data augmentation on the original dataset of 659
elements. Specifically, three kind of data augmentation were
performed (see Fig. 3 for an example):

1. Changes in illumination: a random value in between
-0.15 and 0.15 is added to each RGB channel.

2. Pixels and trajectories translation: all pixels are
translated in x and y with a random value ensuring
that the dirt stays always visible inside the image. A
correspondent shift in meters is then applied to the 200
trajectory points.

3. Substituting background and table with Perlin
noise: we cropped the dirt from the image and
substitute the background and the table with Perlin
noise. Both projected field of view and table shape were
slightly randomized. This data augmentation strategy is
important to perform the transfer learning between the
two robots, since the background is different.
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Fig. 3 Examples of data
augmentation. Left: original
dataset image. Center: same
image with change in
illumination and translation.
Right: same image with Perlin
noise table and background

To create the final dataset we augmented 10 times
the original one applying changes in illumination and
translations, plus more 10 times applying Perlin noise.

The original 659 elements are the same used to create the
dataset in [4]. The difference is in the augmentation with the
Perlin noise. Instead of substituting the entire background
with a Perlin noise texture as in [4], we added two different
Perlin noise textures, one for the table and one for the
background (see Fig. 3). In this way we are able to keep a
basic structure of the environment inside the randomization.

2.3 End-Effector Control

In our previous work [18], we used two CNNs to obtain
three reference frames Xj , 1 ≤ j ≤ 3 used as task
parameters for the TP-GMM (one network for orientations
Aj and the other one for positions bj of the end-effector).
Due to the high variability in kinesthetic demonstrations
the orientation estimation error was high when evaluated on
a test set comprising demonstrations that also presented a
large variability in the orientation of the reference frames.
As a consequence, in this work we decided to simplify the
architecture and to use only one CNN to estimate the initial
b1, intermediate b2 and final b3 positions, obtaining the
rotation matrices Âj directly from the estimated positions
b̂j . More precisely, Âj are 2D rotation matrices of angles
θj calculated as follow:

sin(θj ) = ydist,j√
xdist,j

2+ydist,j
2

1 ≤ j ≤ 3
cos(θj ) = xdist,j√

xdist,j
2+ydist,j

2

(4)

where xdist,j and ydist,j are the differences in x and y

axis between initial and intermediate points in case of
j = 1, and between intermediate and final points in case
of j = 2, 3. Calculating the end-effector orientation this
way is more flexible than extracting it from the kinesthetic
data. The motion constraints of iCub and DoRo are quite
different, same for the orientations achievable by each robot
in a specific position. The orientations recorded moving
the iCub’s hand are biased by the kinematics costraints

of the robot. Using Eq. 4 to calculate the 2D rotation
matrices better generalize on a different robot with different
constraints.

2.4 Convolutional Neural Network

The network architecture used in this paper is the same
as in [18]. The CNNs architecture was devised based on
the AlexNet [20] model changing only the output layer.
In the proposed networks, the 1000 nodes output layer of
the AlexNet is replaced with a fully connected one with 6
nodes. The outputs of the network are the x and y Cartesian
coordinates of the three reference frames. The network takes
as input a 3 channel (RGB) image resized to a dimension
of 240x240 pixels. The network has a total of 8 layers:
5 convolutional layers and 3 feedforward fully connected
layers. Figure 2 depicts a detailed description of the network
architecture. In order to train the network we generated
a dataset of virtual camera images and trajectories using
659 kinesthetic demonstrations of wiping and sweeping
movements. During training we minimize the mean square
error (MSE) between the network outputs and the initial,
intermediate and final positions (x and y) of the hand
trajectories. See Section 3.3 for a detailed description of this
dataset.

2.5 Task Parameterized GaussianMixture Model
and GaussianMixture Regression

The use of a Gaussian Mixture Model to represent a
set of trajectories performed by a human demonstrator
is an efficient way of representing such demonstrations
in a compact way, as all data points will be represented
by a mixture of Gaussians that encompasses the average
demonstrated trajectory, together with a corresponding
variability. Under the LfD paradigm each demonstrated
trajectory m from a set of M demonstrations consists of a set
Tm vectors of dimension D + 1, each vector ξn containing
the observed task space variables yn and the corresponding
time tn, for 1 ≤ n ≤ N and N = ∑M

m=1 Tm. By training
a GMM with K components on this data set and then
conditioning the resulting GMM on the time variable tn one
can obtain an average trajectory as a function of time, to be
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performed by the robot: this is known as Gaussian Mixture
Regression (GMR) [12].

Task Parametrized GMM is an extension of GMM that
allows the extrapolation of skills to different regions of the
task space or to make such learned skill depend on a set of
external variables, e.g., a set of via points for the trajectory
of the end-effector that the robot must reach in succession.
This is done in [3] by considering a set of auxiliary frames
of reference that define initial, intermediate and final points
for the trajectory to perform. Each frame of reference j ,
1 ≤ j ≤ P , is represented by its origin bn,j and rotation
matrix An,j .

We use the same framework as in [3] to learn to
perform a cleaning movement from human demonstrations.
Differently from that work we consider fixed frames of
reference for each demonstration, as these are automatically
calculated for each demonstration, and so we make its
parameters depend solely on demonstration index m, i.e.,
we use origin bm,j and rotation matrix Am,j instead. The
Expectation-Maximization (EM) algorithm [29] is used to
train the TP-GMM: the likelihood function to maximize is
p(ξ |·) = ∏N

n=1 p(ξn|·), with

p(ξn|·) =
K∑

i=1

πip(ξn|i) , (5)

where πi are the mixture proportions, ξ = {ξn} and p(ξn|i),
the probability of mixture component i generating data
point ξn, is given by the joint distribution w.r.t. reference
frames,

p(ξn|i) =
P∏

j=1

p(ξn|j, i) . (6)

With ξn|j, i ∼ N
(
Am,jZ

μ
i,j + bm,j , Am,jZ

Σ
i,jA

T
m,j

)
,

this follows a normal distribution ξn|i ∼ N (μm,i, Σm,i),
with

Σm,i =
( P∑

j=1

(Am,jZ
Σ
i,jA

T
m,j )

−1
)−1

and (7)

μm,i = Σm,i

P∑
j=1

(Am,jZ
Σ
i,jA

T
m,j )

−1(Am,jZ
μ
i,j +bm,j ) , (8)

where index m is the demonstration corresponding to data
point ξn.

Parameters Z
μ
i,j and ZΣ

i,j correspond to the mean vectors
and covariance matrices describing a GMM for the data as
seen from each frame of reference; together with πi they
correspond to the parameters to be learned using the EM
algorithm. The most relevant feature of this approach is that
in this process different weights are assigned to different
frames of reference, according to the current time of the
reproduction, thus effectively capturing the most relevant

features of the human demonstrations. These correspond to
some invariance of the demonstrations as seen from each
frame of reference, encoded in a low variance estimate
for the task space variables, taken from the corresponding
GMM.

The EM training procedure finds, in the E-Step,
responsibilities

γn,i = πip(ξn|i)∑K
k=1 πkp(ξn|k)

(9)

and uses these values to update estimates for parameters
Z

μ
i,j , ZΣ

i,j and πi in the M-Step (for more details please refer
to [3]). After learning, given a new set of frames of reference
Xj = {Aj , bj }, provided by the neural network from the
test image, a trajectory T n is generated in the task space by
conditioning the distribution p(ξ |·) on the time variable tn,
using Eqs. 5, 7 and 8.

3 Experimental Setup

In this section, we will describe the two robots used on
this work, the dataset collected and how the system was
initialized. The iCub robot was used to collect the dataset
using zero torque controllers to perform the kinesthetic
teaching demonstrations, while the DoRo robot was used
to test the system in a real world scenario accessing the
transferring capabilities of the proposed architecture.

3.1 iCub Description

The iCub humanoid robot [30] has 53 motors that move
the hands, arms, head, waist and legs. Regarding the
sensory capabilities, it has a stereo vision system (cameras
in the eyeballs), touch (tactile fingertips and artificial
skin), vestibular sensing (IMU on top of the head) and
proprioception (motor encoders and torque sensors), which
are major features that allowed us to record the dataset used
in this article.

3.2 DoRo Description

The domestic robot (DoRo) [5] is a service robot moved by
a SCITOS G5 mobile platform (developed by Metralabs).
A Kinova Jaco arm (6 DoF manipulator integrated 3-DOF
hand) is mounted on the right side to perform manipulation
tasks. On board are present a front laser (SICK S300)
and a rear laser (Hokuyo URG-04LX) to view and avoid
obstacles and perform self-localization. A pan-tilt system is
installed on the head with two high-res cameras equipped
with different lenses, and an Asus Xtion Pro RGB-Depth
camera used for object detection. The eyes are equipped
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with multicolor LEDs and a speaker is used to interact with
the users.

3.3 Collecting the Dataset

In this work we used a dataset composed by 659
kinesthetic demonstrations collected in [4] changing the
data augmentation strategies (see Section 2.2 for more
details). To collect the dataset we placed the iCub robot,
holding a sponge on its right hand, in front of a white table
of size 50x50 cm. For each demonstration some dirt was
placed on the table (lentils clusters or marker scribbles).
A human guided the iCub right hand cleaning as much as
possible of the dirt spot with a specific motion for each dirt
type. The inputs of the dataset are images of the dirty table
recorded from the iCub right eye before to perform each
kinesthetic demonstration and the labels are the right hand
2D trajectories in x and y of the robot reference frame. Each
trajectory consists of 200 elements. This dataset was then
augmented using the procedure explained in Section 2.2
resulting in a new dataset 20 times bigger. In order to
train the CNN we extracted from the trajectories the first,
intermediate and final points.

3.4 System Initialization

Figure 4 depicts the workspace used in the experiments
with DoRo. The system setup was initialized with the DoRo
robot with its head and arm in a pre-defined position.
Indeed, this initial position can be changed without losing

Fig. 4 The workspace used in our experiments. The DoRo robot is
placed in front of a table. ht is the height of the table expressed in the
robot reference frame O. A bird-view virtual camera is placed on top
of the table

generality and without the need of re-training the whole
system. Moreover, a 50x50 cm table was placed in front of
the robot at different heights: 67 cm, 70 cm and 79 cm. The
z-coordinate used when generating the final end-effector
trajectory was pre-defined matching the measured table
height. Although, the table height was measured by the
experimenter in the DoRo case, it is possible to use a
calibration routine exploiting, for instance, touch or torque
sensors on the hand to feel the table and extract this
information. Furthermore, the virtual camera was calibrated
placing the robot arm on the table in four different positions
as described in the Virtual Camera section (see Section 2.1)
using a joy-stick controller. To obtain similar images to the
one collected on the iCub, we used the same table relative
position to the virtual camera adopted in [4]. As long as
the proportion between meters and virtual camera pixels is
the same as in the iCub generated dataset, the size of the
table is not relevant. Due to the DoRo kinematic structure,
we adopted a top grasp configuration to hold the sponge.
The use of task space coordinates during the learning phase
provides invariance to a particular robot kinematics model,
as long as the 3 reference frames provided by the CNN are
sufficiently far from the robot kinematics singularities. In
our experiments, this is achieved by constraining the region
of the table to be cleaned to be in the robot reachable space.

The collected dataset was divided in two sets: i) training
and ii) validation. The validation set was defined as 20% of
the original dataset (i.e., 20% of 659 human demonstrations)
and the training set was build selecting the remaining 80%
and performing data augmentation. The six position labels
(i.e., the reference frames for the TP-GMM - Xj ) were
normalized to improve the learning and the mean image of
the training set was also calculated and subtracted from the
input image on each training example. The network was
implemented using Caffe [17] and trained with the Adam
optimizer with a fixed learning rate of 0.001 and dropout
with ratio 0.5 on the first two fully-connected layers (see
Fig. 2). Moreover, the training process used a batch size
of 80 and was stopped after 30000 iterations (about 1000
epochs).

3.5 EvaluationMethod

The system was tested placing a dirt spot (marker or
lentils) on the table and making the robot clean it in 5
repetitions without human intervention. The evaluation of
the cleaning task is defined according to the different type
of dirt presented on the environment. For the case of marker
scribbles, the percentage of dirty area m1(r) after each
repetition was calculated:

m1(r) = A(r)

A(1)
100, r = 1, . . . , Nr, (10)
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where A(r) is defined as the dirty area in pixel at repetition
r , and Nr = 5 is the number of repetitions.

For the lentils case, the performance is evaluated using
the metric m2(r), which is defined by the following
expression:

m2(r) = D(r)

D(1)
100, r = 1, . . . , Nr, (11)

where D(r) measures how far the dirt is from the target
position. D(r) is defined as:

D(r) =
Np∑
i=1

I (i) ×
√

(i − o)T (i − o), (12)

where I (i) is an indicator function which identifies the dirty
pixels, o is the bottom-right corner of the table (the target
position) expressed in pixels and Np is the total number of
pixels in the input image.

To calculate the dirty area in the images, we used a post-
processing phase where a color (RGB-based) segmentation
was performed.

4 Results

In this section we present the results of the proposed
cleaning architecture showing: i) a detailed analysis of
the performance of the neural network and of the TP-
GMM correlating it with the amount of training examples
used and data augmentation strategies and ii) real-world
experiments testing the learned architecture on a different
robotic platform - the DoRo robot (see Fig.1).

4.1 Validation Set

The results presented on this section were evaluated on (the
same) 20% of the original iCub cleaning dataset, which
we call for now on as Validation Set. We exploit the 80%
remaining examples to train the network and the TP-GMM
algorithm, testing several strategies of: i) data augmentation

(for the case of the network) and ii) different quantities of
training data to access the amount of necessary examples to
achieve a good accuracy in the cleaning task (on both, CNN
and TP-GMM).

4.1.1 Network Tests

The execution of kinesthetic demonstrations to feed the
system with learning examples could be time consuming, so
to access the performance of the Network on the validation
set according to the data present in the training set, we
run the Network several times with different types of
data augmentation and with different amounts of initial
kinesthetic teaching examples.

We have created 12 (different) training sets combining
four (4) percentages of the original dataset (80% - 527
samples, 50% - 330 samples, 20% - 132 samples and 10%
- 66 samples) with three (3) data types (O, T and P).
The datasets of type O include only the Original samples,
the datasets T extends O adding 2 data augmentation
strategies (variations of illumination and Translation) and
the P datasets include the previous ones adding the Perlin
noise images as well. The performance of the Network on
the validation set taking into consideration the amount of
data used and augmentation strategy performed can be seen
in Table 1.

The training loss is similar in all the training sets
which implies that the Network is learning (i.e., reducing
the error) on those datasets, however, the validation loss
increases when we feed the network with less examples. For
instance, using only 20% of the original dataset (O20%),
the loss increases one order of magnitude(from 2.65 to
27.54, on O80% and O20%, respectively). Looking on the
data augmentation strategies (T and P) using only 20% of
the available data, one can see that the validation loss is
similar to the case the network is trained on 80% of the
original dataset is used (O80% = 2.65; T20%=2.76 and
P20%=3.15). Comparing the most promising networks with
data augmentation (T20% and P20%) with the networks

Table 1 Loss after training the Network for 30000 iterations

80% 50% 20% 10%

(527 original samples) (330 original samples) (132 original samples) (66 original samples)

O T P O T P O T P O T P

Effective Training Samples 527 5797 11067 330 3630 6930 132 1452 2772 66 726 1386

Training Loss [×10−3] 2.70 2.96 3.04 1.25 2.43 2.76 1.29 2.09 2.81 1.18 2.17 3.66

Validation Loss [×10−3] 2.65 1.65 1.94 14.5 2.01 2.64 27.54 2.76 3.15 45.21 5.02 4.10

The dataset is composed with 80%, 50%, 20% and 10% of the initial dataset (527, 330, 132 and 66 samples, respectively) to train the Network
using three types of data. (O: Original examples; T: translation and illumination changes and O examples; P: Perlin noise augmentation and T
examples, check Section 2.2)
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Fig. 5 Training and validation loss of the 4 used network. (Best viewed in color)

trained on the original dataset (O80% and O20%), one can
see the evolution of the loss on training and validation on
Fig. 5. In Fig. 5, the solid line is the filtered loss signal
using a moving average filter with a window size of 5 (i.e.,
500 iterations) and the dotted signal is the original (non-
filtered) data. Furthermore, with only 10% of the kinesthetic
teaching examples (66 samples), the network is not able to
generalize well, achieving a validation error 2 times bigger.

Clearly, the Perlin noise is not essential on the
validation set (achieving a similar validation loss). This
happens because the background is roughly the same (the
environment did not change). However, as can be seen in
Section 4.2, it will be essential when generalizing to another
background (on the DoRo robot). After this evaluation, we
conclude that T20% and P20% are suitable to test on the
real robot and are a good trade-off between number of
kinesthetic teaching and accuracy achieved.

4.1.2 TP-GMM Tests

The TP-GMM should be learned using cleaning trajectories
as demonstrations. In order to access the amount of
demonstrations needed to learn to generate the task
trajectories we use the 80% of the original dataset as training
and 20% of the dataset as validation set (the same validation
set in Section 4.1.1). The TP-GMM was initialized using
several quantities of random sampled demonstrations and
the learned model was tested on the validation set. Figure 6
depicts the mean and standard deviation on 10 trials
(increase each 10 demonstrations) of the error between
GMR generated trajectories and kinesthetic ones as they
vary in the number of demonstrations used.

4.2 Robot Experiments

The proposed architecture was tested on a real scenario
using the DoRo robot (See Fig. 1) to determine the
transferring capabilities of the cleaning system to a different

robotic platform. The robot should try to clean the dirty
table (with marker scribbles or cluster of lentils) using a
budget of five (5) repetitions (Nr = 5). For each repetition
(r), the agent looks to the table, detects the dirt and adjusts
the output trajectory accordingly (same experimental setup
as in [4] for the iCub robot). In Fig. 7, one example
of cleaning markers scribbles (left column) and one of
cluster of lentils (right column) can be seen with the output
trajectory super-imposed on the image with black color
using the P20% Network. In this case, the red ink was
cleaned after the second repetition and the cluster of lentils
is closer to the right bottom corner of the table after the
five repetitions (final result). Note that we did not draw the
trajectories generated on the marker scribbles inside the five
repetitions budget (i.e., r = 3, 4, 5), since the table was
already clean (apart from some small fragments invisible
for the robot). Moreover, our architecture does not have a
criteria to stop the cleaning task (see Section 5 for further

Fig. 6 Variation of the error between GMR generated trajectories and
kinesthetic ones, with the number of demonstrations presented to the
GMM
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Fig. 7 Testing examples on the real robot - DoRo - over 5 budget
repetitions. In black color it is possible to see the output trajectory. Left
Column: marker scribbles; Right Column: lentils

Fig. 8 Mean and standard deviation, using evaluation metric 1 (See
Eq. 10), for 15 Marker Experiments with 3 different table height on
the DoRo Robot

discussion), so the robot will perform always the same
trajectory if an input image with a clean table is shown.

In a more quantitative analysis, and using the error
metric 1 defined on Eq. 10, the DoRo robot performed 15
cleaning experiments on marker scribbles setting the table at
3 different heights. The results over the 5 repetitions budget
can be seen in Fig. 8. We reduced the dirt in 75% of its
initial area with a standard deviation of 20%. In the lentils
case, the table was set at the same 3 different heights and the
robot performed 15 different experiments. The mean error
and standard deviation using the metric m2 (see Eq. 11)
can be seen in Fig. 9. The percentage of the initial distance
from the bottom right corner of the table (the target point
when cleaning this type of dirt) was reduced in 50% with a
standard deviation of 10%.

Fig. 9 Mean and standard deviation, using evaluation metric 2 (See
Eq. 11), for 15 Lentils Experiments with 3 different table height on the
DoRo Robot
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Table 2 Comparison between the previous results of [4] on the iCub robot and our results on the DoRo robot

Marker Lentils

Area cleaned Standard Deviation Distance reduced Standard Deviation

Cauli et al. (iCub) [4] 80% 15% 45% 2%

Our results (DoRo) 75% 20% 50% 10%

The test scenario is the same for both the experiments. The two systems have a different network architecture and a different data augmentation
strategy

Table 2 shows the comparison between the results
obtained on the DoRo and the results of [4] obtained on the
iCub (networks and datasets of the 2 systems have some
differences. Please refer to Sections 1.1 and 3.3). The results
on the DoRo are close to the results obtained on the iCub,
showing how a system trained on one robot can be used to
control a second one.

The networks trained on O80%, T20% and P20%
(check Fig. 5 and Table 1) were tested on the DoRo robot.
The network trained with only the original images (O80%)
was not able to detect and clean any type of dirt. The
T20% network was able to clean the dirt when its location
was on the central part of the table but with lower overall
performance. Indeed, the data augmentation with Perlin
noise (P20%) was essential for transferring the learned
cleaning movements from the iCub to the DoRo robot,
since the background surrounding the robot is completely
different on the DoRo robot (see examples in Fig. 7) and on
the iCub (see original dataset on Fig. 3 - left).

5 Conclusions and Future work

We presented a framework for learning how to perform a
given cleaning task from human kinesthetic demonstrations,
directly from raw camera images, and later transferring the
knowledge gathered in this process to a different robot.
The parameters of the convolutional neural network trained
using the provided demonstrations can be directly used
in a different robot if some care is taken to make the
network invariant to illumination and perspective changes
when applied to a different robot. To achieve this we employ
several techniques, such as using a virtual camera to achieve
perspective invariance across robots and data augmentation
by random changes in illumination, image translation and
adding Perlin noise to the background regions of the images.
The use of these strategies reduced the need for a large
training set — only 20% of the recorded data was needed to
achieve a similar test error when compared to the situation
where no data augmentation was used. Furthermore, the
robustness provided by the use of these techniques allowed
for a straightforward use of the trained CNN in a different

robot: the trained CNN using data acquired from human
demonstrations on the iCub robot was used in the DoRo
platform to perform the same task without noticeable loss of
performance.

A current limitation of the proposed framework is the
need to perform an initial manual calibration to set up the
virtual camera on the second robot, so that the learned CNN
can be used to perform the cleaning task. Also, currently
the trajectory generation is performed in open-loop, with
intermediate trajectory points provided by the network
learned from human demonstrations. As a consequence, the
robot can become stuck performing the same trajectory over
and over again when the performed movement does not
significantly change the dirt configuration: this typically
happens when the table is almost cleaned, as discussed in
the previous section. Implementing a stopping criteria based
on the detection of a clean table could be a straightforward
solution for this problem. Moreover, a direction for further
research that can alleviate this issue is to use a deep
reinforcement learning approach [8], where the robot can
learn from trial and error how to clean the table, based on a
set of image features provided by a deep neural network.
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