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Abstract Expected Perception based control systems

use the robotic system’s internal models and interac-

tion with the environment in order to predict the fu-

ture response of their sensory inputs. By comparing

the sensory predictions with the actual sensory data,

the expected perception (EP) control system monitors

the error between the predicted and the actual sensor

observations. If the error is small the system may decide

to neglect the input and skip any corrective action, thus

saving computational and energy resources. If the mis-

match is large the system will further process the sensor

signal to compute a corrective action via feedback. So

far, EP systems have been implemented for predictions

based on robot’s own motion. In this work, an EP sys-

tem is applied to predict the dynamics and anticipate

the motion of an external object. The new control sys-
tem is implemented in a humanoid robot, the iCub. The

robot reaches in anticipation for an object’s future po-

sition, by predicting its trajectory and correcting the

arm’s position only when necessary. The results of the

EP based controller are analysed and compared against

a standard controller. The new EP based controller is

less computationally demanding and more energy effi-

cient, for a marginal loss in the tracking error.
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1 Introduction

Robots are gradually becoming a part of our daily life.

Robotic toys for children and robotic home cleaners are

now easy to find in commodity stores and robotic com-

panions and caretakers for elderly people may be avail-

able in a near future. Robots’ working environment is

no longer the strictly structured one of a manufactur-

ing industry, but a hyper-dynamic world with multiple

uncertainties.

In order to deal with a constantly changing environ-

ment, a robot (just as a human) needs to anticipate
future conditions in order to properly control its own

movements. Humans appear to solve this problem by

predicting changes in their sensory system as a conse-

quence of their actions (Berthoz, 2002). Predictions are

obtained using internal models which represent their

own bodies as well as external objects dynamics (Jo-

hansson, 1998; Miall and Wolpert, 1996; Nguyen-Tuong

and Peters, 2011).

There are three main types of internal models (Miall

and Wolpert, 1996): the forward models, the environ-

ment models and the inverse models. Forward models

make it possible to predict the future data from past

perceptions and planned actions; environment models

predict the dynamics of external objects or agents; in-

verse models find the actions needed to obtain a desired

state starting from the actual one.

A number of implementations of anticipatory sensory-

motor systems based on internal models have been cre-

ated so far in robotics. Examples of control systems for

mobile robots that predict visual sensory data through
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forward models are shown in (Gross et al, 1999; Hoff-

mann, 2007), while in (Bauml et al, 2011; Kim and Bil-

lard, 2012; Kober et al, 2012; Vannucci et al, 2014) the

authors proposed different systems anticipating the dy-

namics of moving objects in order to accomplish catch-

ing and pursuit tasks.

All the previous works use internal models to simu-

late the future and perform actions with anticipation.

Although actions are anticipated, control loops main-

tain a strict sequentiality between perception and ac-

tion: obtaining data from the sensors, predicting future

response and planning the action to perform. A prob-

lem with this approach is that long term predictions

and action planning are time and resource consuming

processes. As an alternative, sensory feedback can be

”switched-off” if predictions are compatible with the

current observations. This means that the executed ac-

tions are working as planned and no modifications to

the plan are necessary. This is the main principle of Ex-

pected Perception (EP) control architectures (Datteri

et al, 2003; Laschi et al, 2006, 2008; Barrera and Laschi,

2010). The main idea is to execute sensory processing

and behaviour planning only if the expected sensory

feedback is different from the actual one. EP controllers

use a forward model to predict future sensory responses

that are compared to the actual one, when it arrives.

If the error is lower than a threshold the system con-

tinues with the previously planned behaviour (like a

feed-forward controller), otherwise it processes the sen-

sory data again and updates the plan.

EP architectures have been successfully implemented

in different applications. (Datteri et al, 2003) first used

the EP concept to visually control an 8 DOF robotic

arm. With a camera on its end effector, the robot was

able to predict the next camera images based on the

old ones and on the arm motor commands. In (Laschi

et al, 2006, 2008) the EP architecture was implemented

to accomplish a grasping task. The robot had the abil-

ity to grasp an object by predicting the tactile image

that would be perceived after reaching for it. The EP’s

most recent implementation used the predicted images

to locate unexpected objects in the scene (Moutinho

et al, 2011).

The previous EP based works focused mainly on sensory-

motor anticipation. They used a forward model to pre-

dict the future sensory data from the past perceptions

and the planned actions. The static nature of the en-

vironment was a fundamental requirement to obtain a

correct Expected Perception. The sensory data predic-

tion was based only on the robot’s self movements and

motions of external moving objects were recognised as

prediction errors. There is still a lack of applications of

EP systems that exploit the dynamics of external ob-

jects using environment models. In this work we present

an EP system that anticipates the motion of an exter-

nal object and show its advantages with respect to a

standard control scheme in terms on computational ef-

fort and energy efficiency. The new EP controller was

implemented in a humanoid robot, the iCub. The robot

anticipates the state of an object undergoing a regular

motion and moves its hand towards a position where

grasping can be achieved more reliably.

This paper is organised as follows: Section 2 describes

the experimental paradigm and presents the two con-

trol modalities under analysis (EP and standard con-

trollers). Section 3 describes the implementation of the

control systems, Section 4 analyses and compares the

results and Section 5 draws the conclusions.

2 EP based control on the iCub Robot

The main goal of this work is to analyse the advantages

of EP control over a standard approach in a situation

where the anticipation of external object dynamics is

needed. The control systems were tested in a task of

reaching for a moving target. The iCub humanoid robot

was used to perform that task (see Sect. 3).

2.1 Task description

To illustrate the principles of Expected Perception in

non static environments, we consider the problem of a

robotic arm reaching for an object following a damped

pendular motion. This is a simple non-periodic regu-

lar motion that can be analytically modelled, imple-

mented by simple means in a laboratory setup, and

does not demand for a too high bandwidth in the per-

ceptual and computational system. We note that the fo-

cus of this paper is not on the estimation of dynamical

motions but on novel control methodologies involving

the Expected Perception concept. In principle any pre-

dictable dynamical system (periodic or aperiodic) could

be used as external motion. However, using a simple,

low-velocity, regular motion for the external object pre-

vents issues arising from the complexity of the motion

and the bandwidth of the involved computational ar-

chitecture, allowing us to compare different algorithms

under controlled situations.

In the chosen task, the iCub robot is placed in front of

a pendulum (the target) suspended on the ceiling by a

wire and oscillating on a vertical plane1. The target ref-

1 This is an approximation. In general the ball may have
out of plane motion. During the experiments we initialised
the position of the pendulum such as to minimise out of plane
motion.
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Fig. 1 Top view of the reaching task performed by the robot.
At each oscillation the iCub moves its right hand to the posi-
tion G(Tj) = (Xm, Ym, d), where B(Tj) = (Xm, Ym, Zm) is
the position of the target at the minimum distance (Zm − d)
during the oscillation

erence frame XpYpZp is centred on its own pivot point

and is rotated around the Yp axis of an angle α with

respect to the robot reference frame XY Z (see Fig. 1).

The robot moves its right hand along a sliding plane

(a fixed imaginary vertical plane along which the hand

is moving) perpendicular to its Z axis. The sliding

plane is placed at distance d along the Z axis from

the robot reference frame. During each oscillation j,

the target reaches a minimum distance to the plane

at the extremal positions of the oscillation, B(Tj) =

(Xm, Ym, Zm), where its velocity is zero. Tj is the time

when the ball reaches the extremal position and B(t)

is the position of the ball at time t. The robot aims at

grasping the ball at the goal positionG(Tj) = (Xm, Ym, d),

corresponding to the projection of B(Tj) on the sliding

plane. All the positions are expressed in the iCub ref-

erence frame (placed in the pelvis of the robot).

The humanoid robot tracks the target moving its head

and eyes. After an observation period ∆obs, necessary

to observe the target movement and bootstrap its in-

ternal state, the robot starts placing the hand at the

closest point on the plane to the predicted goal posi-

tion. The hand position is corrected either periodically,

using the classical controller, or aperiodically, using the

EP based controller. The iCub repeats this procedure

at each oscillation. The aim is to have the hand at the

goal position when the ball reaches the extremal po-

sition and to achieve this through a computationally

efficient and energy saving methodology.

2.2 System model

The target movement is approximated as a damped os-

cillation of a 2D pendulum on a plane A rotated of an

angle α around the Yp vertical axis (see Fig. 2). Defining

Θ, Θ̇ and Θ̈ as, respectively, angular position, velocity

Fig. 2 Pendulum model. 2D pendulum oscillating on a plane
A rotated of an angle α on the Yp axis

and acceleration, g as gravity, L as wire length, µ as

damping factor and m as ball mass, the equation for

describing the motion of the simplified model of the 2D

pendulum is:

Θ̈ +
µ

m
Θ̇ +

g

L
sin(Θ) = 0 (1)

Because there is uncertainty in the parameters µ, m,

L, the pivot position (Cx, Cy, Cz) and α, we opt to es-

timate not only the motion variables but also the pen-

dulum parameters. This results in a eight element state

vector:

x =
[
Θ, Θ̇, µm ,

g
L , Cx, Cy, Cz, α

]>
(2)

The state vector includes all unknown variables, either

time varying or constant. Despite onlyΘ and Θ̇ are time

varying, we also have to estimate the others in order

to make good predictions. Using Eq. (1) and (2) the

transition and observation models become respectively:

f(x) = x+∆tẋ = x+∆t



x2

−x3x2 − x4 sin(x1)

0

...

0


(3)

h(x) =

x5 + g
x4

sin(x1) cos(x8)

x6 − g
x4

cos(x1)

x7 − g
x4

sin(x1) sin(x8)

 (4)

where x1, . . . , x8 are the entries of state vector x.
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Fig. 3 Expected Perception (Th > 0) and standard controllers (Th = 0) (see Sect. 2.3 for more details)

2.3 The control systems

Two control modalities were tested and compared. Fig. 3

presents a block diagram showing the main components

of both controllers. Their input is the 3D position of

the ball B(t) and the outputs are the arm motor com-

mands expressed in joints velocities vq(t). The first con-

trol system is based on a standard architecture, while

the second one is based on the Expected Perception

concept. Both systems have an internal model of the

pendulum implemented with an Extended Kalman Fil-

ter (EKF). The filter input is the target position com-

puted by the visual processing block, B(t). This posi-

tion is used by the filter to update its internal state

x. The EKF is iterated through time to obtain the

predicted trajectory of the ball for future time steps

B(t + k | t), k = 1 . . . (Tj − t). The predicted extremal

position B(Tj | t) is computed as the position for which

velocity changes sign in x or y, and is used to obtain

the predicted goal position G(Tj | t). The Inverse Kine-

matics Solver uses G(Tj | t) to compute the desired

target robot joints’ angles Gq(Tj | t) and the Con-

troller computes the motor joints’ velocity trajectory

vq(t) (Pattacini, 2011). The Controller frequency is 50

Hz, while the predictor is limited by the camera frame

rate to a frequency of 30 Hz.

Under the assumption of Gaussian noises, EKF per-

forms two main steps to estimate the state: the pre-

diction and the correction steps. During the prediction

step the filter computes its predicted internal state x(t |
t− 1) and the predicted covariance matrix P (t | t− 1):

x(t | t− 1) = f(x(t− 1 | t− 1)) (5)

P (t | t− 1) = A(t)P (t− 1)AT (t) +Q (6)

where x(t | t) is the estimate of the state at t, f is

the transition function, A is the Jacobian of f , P is

the state covariance matrix and Q is the process noise

covariance matrix. After the prediction step the filter

performs the correction step to update the previously

predicted internal state and covariance matrix based on

the observations:

K(t) = P (t | t− 1)HT (t)(H(t)P (t | t− 1)HT (t) +R)−1

(7)

x(t | t) = x(t | t− 1) +K(t)(B(t)− h(x(t | t− 1))) (8)

P (t) = (I −K(t)H(t))P (t | t− 1) (9)

where K is the Kalman gain, h is the observation func-

tion, H is the Jacobian of h on x, R is the covariance

matrix of the observation noise, (B − h(x(t | t− 1))) is

the innovation and I is the identity matrix. For more

details about Kalman filtering see (Bishop and Welch,

2001).

Expected Perception based Controller: The EP

based controller uses the sensory prediction to skip some

of the computations done on sensory processing and

kinematics solving. In particular, the EP control sys-

tem re-calculates the predicted trajectory B(t + k | t),
k = 1 . . . (Tj − t), and the desired joints’ angles Gq(Tj |
t) only if the error between the current ball position

B(t) and the old predicted trajectory B(t | tbefore) is

bigger than a threshold (Th). In B(t | tbefore), tbefore
represents the time when the predicted trajectory was

last computed. During each control cycle the robot per-

forms the following actions (see Fig. 3 for Th > 0):

1. processes the camera images calculating the 3D ball

position, B(t)

2. updates the filter state x(t | t) and the covariance

matrix P (t)

3. calculates the absolute value of the error between

the current ball position and the old predicted tra-

jectory, E(t) =| B(t)−B(t | tbefore) |
4. if the error is bigger than Th: re-calculates the

predicted trajectory of the ball B(t + k | t) and

the desired joints’ angles Gq(Tj | t); tbefore = t

if the error is less than Th: keeps the old pre-

diction and inverse kinematics solutions

Standard Controller: The standard control system

recomputes the desired joint positions Gq(Tj | t) at

every time step. The standard controller corresponds

to the EP based controller with Th equal to 0 and

tbefore = t (see Fig. 3 for Th = 0).

3 Implementation

The standard and EP based controllers were imple-

mented on the Lisbon iCub robot and its simulator
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Fig. 4 Left: The iCub humanoid robot tracking the oscillat-
ing target (red ball). Right: the iCub Simulator during the
test. The blue ball is the predicted goal position, the yellow
ball is the output of the 3D tracker and the purple ball is the
output of the filter

(Tikhanoff et al, 2008) using Yarp modules written in

C++. The iCub (see Fig. 4 left) is a humanoid robot

which imitates a three year old child. It has 53 DOF in

total (7 for each arm, 8 for each hand, 6 for the head,

3 for the trunk and 7 for each leg). The robot has 2

DragonFly cameras in the eyes. The camera resolution

is 320x240 and the images are acquired at 30 fps. The

iCub simulator (see Fig. 4 right) mimics the kinemat-

ics and dynamics of the iCub robot. It is based on the

Open Dynamics Engine (ODE) and uses the OpenGL

as graphics engine. The middleware YARP (Yet An-

other Robot Platform) is used to control both the sim-

ulated and the real robot.

An EKF (Kalman et al, 1960; Bishop and Welch, 2001)

was used to implement the Internal Model representing

the dynamics of the pendulum. The Visual Processing,

the arm Planner and the Controller were realised us-

ing the iCub modules library: the pf3DTracker (Taiana

et al, 2010) was used to calculate the 3D position of the

target in the left eye reference frame; the iKinGazeCon-

troller (Pattacini, 2011) was employed to control the

movement of the eyes and the head in order to main-

tain the target in the center of the camera image; the

iKinCartesianController (Pattacini, 2011) was used to

calculate the inverse kinematics and to control the arm.

The hand H(t) and ball B(t) positions were both ex-

pressed in the robot reference frame (centered in the

iCub pelvis).

The entire Algorithm 1 describes the EP based con-

troller, while the same algorithm without the red coloured

lines (3, 10, 20 and 21) describes the standard con-

troller.

4 Results

In order to test the performance of the two control al-

gorithms, real data taken from the iCub robot was run

on the iCub simulator. We decided to use the simulator

1 filter initialization;
2 predicted ball trajectory B(t+ k | t) initialization;
3 tbefore = t;
4 forall the control steps do
5 i = 0;
6 read new image;
7 calculate 3D position of the target, B(t);
8 execute the filter prediction step,

x(t | t− 1), P (t | t− 1) ;
9 execute the filter correction step, x(t | t), P (t);

10 if (B(t)−B(t | tbefore)) > Th or new oscillation
started then

11 save filter state, xold(t | t) = x(t | t);
12 repeat
13 i = i+ 1;
14 execute the filter prediction step,

x(t+ i | t− 1 + i), P (t+ i | t− 1 + i);
15 add the predicted ball position to the

predicted ball trajectory,
B(t+ i | t) = h(x(t+ i | t− 1 + i)) ;

16 until (t+ i) < Tj ;
17 calculate the goal position from the predicted

ball trajectory, G(Tj | t) = B(t+D | t);
18 calculate the desired joints position Gq(Tj | t)

to reach the predicted goal position G(Tj | t);
19 load filter state x(t | t) = xold(t | t);
20 tbefore = t;

21 end

22 end

Algorithm 1: EP based (with red lines) and stan-

dard (without red lines) control loops

in order to have a more extensive statistical analysis of

the data and to avoid stressing the robot given the high

number of runs to be performed. A ball with a radius

of 3 cm was attached to the ceiling (2 meters high in

the robot reference frame) using a wire 1.4 meters long.

The pivot point was placed at 80 cm in front of the

robot and slightly shifted to the left side (5 cm). An

oscillation sequence was captured using the left cam-

era of the iCub robot. The duration of the sequence

was 40 seconds. During the oscillation, to prevent the

target from going out from the camera’s field of view,

the robot tracked the ball moving both eyes and head.

The data obtained from the 3D tracker and the robot

encoders was saved and used as input for the simula-

tor to test both control algorithms. The dataset was

created recording 20 different sequences with the ori-

entation angle α varying slightly around 70-80 degrees

(see Fig. 5). By suitably defining the initial position

of the ball, we could guarantee that α was set around

these values, in order to have oscillation on all the axis,

with significant ball movements especially on the x axis.

This choice was taken mainly due to experimental con-

ditions (available lab space) and making sure the target

did not collide with the robot during its trajectory. On

the real pendulum the α angle tended to slowly drift
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Fig. 5 One of the 20 sequences of the real pendulum trajec-
tory as recorded by our system and used as dataset for the
experiments. The first three oscillations were used to make
the filter converge before driving actual arm movements

through time, but the filter was able to adapt to these

changes. The presented results were calculated as the

mean and variance of the system’s performance across

the 20 sequences. The first three oscillations of each se-

quence were used as observation period, ∆obs, to make

the EKF converge to reasonable initial values to trigger

arm movements.

The EP based and standard controllers were tested on

3 different metrics: the computational time, the average

error and the control energy.

Computational time (CT): Each time step the fil-

ter must update its state and, when needed, predict the

target position. The computational time is the mean of

all the update and prediction times calculated during

one sequence.

Average error (AE): To evaluate the precision of the

control algorithms, the absolute values of the errors be-

tween the extremal positions, B(Tj), and the hand po-

sition at the time the ball reaches the extremal point

H(Tj) were calculated. Their mean over all oscillations

of the sequence was used to compare the performances

of the systems.

Control energy (CE): Energy consumption during

the arm movement is also among the most important

evaluation criteria. In order to calculate the control en-

ergy, the vector of joints velocities vq was used. The

control energy is the sum of squared joints velocities

through time. The following equation is an approxima-

tion taking into account unit masses and moments of

inertia in the joints:

CE =
∑
i

∑
q

‖vq(i) ∗∆ti‖2, (m/s)
2

(10)

In order to implement both control systems, the values

of some parameters have to be chosen. The parameters

which are shared between standard and EP based con-

trol systems are:

1. The initial state of the filter, x0
2. The initial covariance matrix of the filter, P0
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Fig. 6 Average Error changes on varying the threshold. The
plot represents the EP based controller results. The standard
controller corresponds to the point with Th = 0 m. Mean and
standard deviation on 20 sequences are shown
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Fig. 7 Control Energy changes on varying the threshold. The
plot represents the EP based controller results. The standard
controller corresponds to the point with Th = 0 m. Mean and
standard deviation on 20 sequences are shown

3. The process noise of the filter, Q0

4. The observation noise of the filter, R0

In addition the EP based control system needs the EP

threshold to be defined.

In the initial filter state the angular position and veloc-

ity were initialised to 0. Same initial value was assigned

to the ratio between the damping factor µ and the ball

mass m. For what concerns the length of the pendu-

lum wire L, we used the approximate length of the real

pendulum (1.4 meters). We assigned 0 to both the Cx
and Cz position of the pivot, while we decided to ap-

proximate Cy by the position of the ceiling compared

with the robot reference frame. We also initialised the

rotation angle α of the pendulum plane to 0.

The initial covariance matrix P0 was defined as an 8×8

Identity matrix.

The values of process and observation noise gains were

decided after performing empirical tests in order to ob-

tain a good compromise between fast convergence and

precision of the filter. The value chosen for the process

noise gain q was 1e−6 while the value chosen for the

observation noise gain r was 0.05 (5 cm). The two error

matrices Q0 and R0 were obtained by multiplying q and

r respectively by 8× 8 and 3× 3 Identity matrices.

EP threshold values varied between 0cm and 2cm, in
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Fig. 8 Behaviour of the two algorithms during an oscillation sequence. The EP controller has Th = 4 mm. Results on the X
axis are shown

steps of 2mm. A 0cm threshold corresponds to the stan-

dard control system. For each threshold value we com-

puted the performance metrics defined at the beginning

of this Section. The results of the controllers for differ-

ent Th values are shown in Figs. 6 and 7. In the plots,

the solid line represent the results on EP based and

standard controllers.

The standard approach is more time consuming, but

it is also more precise in placing the hand in the goal

position (see Tab. 1). This happens because the stan-

dard controller updates the predicted target trajectory

at each step while the EP based controller updates are

more seldom.

In Fig. 6 the results on the average error are shown. It

is possible to notice that the EP based controller error

grows monotonically for small values of the threshold.

Due to the initial observation period ∆obs of three os-

cillations, the system’s average prediction errors start

with values close to 1 cm (1.06 cm to be precise).

The control energy is shown in Fig. 7. The figure shows

decreasing control energy with increasing thresholds.

This behaviour is due to the fact that the less updates

of the target trajectory are executed, the less movement

the iCub arm performs. The control energy stabilises

for threshold values bigger than or equal to 1 cm. This

happens because all the cases with thresholds bigger

than 1 cm execute only few trajectory predictions per

oscillation keeping the arm behaviour similar.

Therefore, the EP based controller resounds to the need

of consuming less energy and sparing computational

time. Based on our results, a general rule is to set the

EP threshold as high as possible while keeping the sys-

tem error lower than a predefined limit. This can be

done empirically, determining the threshold value by

experiments, or automatically, changing the threshold

dynamically. In our case we can decide a maximal er-

ror and initialize the threshold accordingly. In case we

are not interested in the maximal system error but, for

example, in the maximal update frequency, we can de-

Table 1 Comparison between the computational time, aver-
age error and control energy of the EP based (Th = 4 mm)
and the standard controllers

Algorithm CT AE CE

EP 0.97e−4 sec 9.30e−3 m 3.37e2 (m/s)2

Standard 3.08e−4 sec 6.70e−3 m 3.99e2 (m/s)2

cide to dynamically change the threshold based on the

update frequency.

Let’s assume that, for a successful grasp, a reasonable

limit for the hand position error is 1 cm. Among the

EP based systems with errors lower than 1 cm, the one

with the threshold value of 4 mm is the one with lower

Control Energy and Computational Time. The results

on the X axis for the two controllers are shown in Fig. 8

and summarised in Tab. 1.

5 Conclusions

In this paper a bio-inspired predictive controller based

on internal models has been implemented and com-

pared with a standard predictive controller. The Ex-

pected Perception concept was used to create such pre-

dictive control system able to anticipate the dynamics

of an external object. The experiments conducted on

the iCub robot show that the system is able to predict

the future target trajectory and anticipate the target

dynamics moving the robot hand to the predicted goal

position. The EP based controller is less time consum-

ing and more energy efficient than a standard controller.

Although the position error of the standard controller

is lower, the position error of the EP based controller

can be kept within limits by defining the EP thresh-

old. In our case, we have set a tracking error of 1 cm

according to the task and mechanical precision limits

of the robot. The internal simulation of the target mo-

tion makes it possible for the robot to simulate future
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events and only change the plan of action when signifi-

cant deviations from the predictions occur. The results

confirm the advantages of using an EP based control

system that models the dynamics of external objects.
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